Skip to main content

Open Neural Network Exchange

Project description

Build Status Build Status Build Status CII Best Practices

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

Learn about the ONNX spec

Programming utilities for working with ONNX Graphs

Contribute

ONNX is a community project. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the SIGs and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read this document.

Discuss

We encourage you to open Issues, or use Slack for more real-time discussion

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Installation

Binaries

A binary build of ONNX is available from Conda, in conda-forge:

conda install -c conda-forge onnx

Source

If you have installed onnx on your machine, please pip uninstall onnx first before the following process of build from source.

Linux and MacOS

You will need an install of Protobuf and NumPy to build ONNX. One easy way to get these dependencies is via Anaconda:

# Use conda-forge protobuf, as default doesn't come with protoc
conda install -c conda-forge protobuf numpy

You can then install ONNX from PyPi (Note: Set environment variable ONNX_ML=1 for onnx-ml):

pip install onnx

Alternatively, you can also build and install ONNX locally from source code:

git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive
python setup.py install

Note: When installing in a non-Anaconda environment, make sure to install the Protobuf compiler before running the pip installation of onnx. For example, on Ubuntu:

sudo apt-get install protobuf-compiler libprotoc-dev
pip install onnx

Windows

If you are building ONNX from source on Windows, it is recommended that you also build Protobuf locally as a static library. The version distributed with conda-forge is a DLL and this is a conflict as ONNX expects it to be a static library.

Note that the instructions in this README assume you are using Visual Studio. It is recommended that you run all the commands from a shell started from "Developer Command Prompt for VS 2019" and keep the build system generator for cmake (e.g., cmake -G "Visual Studio 16 2019") consistent.

Build Protobuf and ONNX on Windows

Step 1: Build Protobuf locally

git clone https://github.com/protocolbuffers/protobuf.git
cd protobuf
git checkout 3.11.x
cd cmake
# Explicitly set -Dprotobuf_MSVC_STATIC_RUNTIME=OFF to make sure protobuf does not statically link to runtime library
cmake -G -A -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF -DCMAKE_INSTALL_PREFIX=<protobuf_install_dir>
# For example:
# cmake -G "Visual Studio 16 2019" -A x64 -Dprotobuf_MSVC_STATIC_RUNTIME=OFF -Dprotobuf_BUILD_TESTS=OFF -Dprotobuf_BUILD_EXAMPLES=OFF -DCMAKE_INSTALL_PREFIX=..\install
msbuild protobuf.sln /m /p:Configuration=Release
msbuild INSTALL.vcxproj /p:Configuration=Release

Step 2: Build ONNX

# Get ONNX
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive

# Set environment variables to find protobuf and turn off static linking of ONNX to runtime library.
# Even better option is to add it to user\system PATH so this step can be performed only once.
# For more details check https://docs.microsoft.com/en-us/cpp/build/reference/md-mt-ld-use-run-time-library?view=vs-2017
set PATH=<protobuf_install_dir>\bin;<protobuf_install_dir>\include;<protobuf_install_dir>\libs;%PATH%
set USE_MSVC_STATIC_RUNTIME=0

# use the static installed protobuf
set CMAKE_ARGS=-DONNX_USE_PROTOBUF_SHARED_LIBS=OFF -DProtobuf_USE_STATIC_LIBS=ON

# Optional: Set environment variable `ONNX_ML=1` for onnx-ml

# Build ONNX
python setup.py install

If you would prefer to use Protobuf from conda-forge instead of building Protobuf from source, you can use the following instructions.

Build ONNX on Windows with Anaconda

# Use conda-forge protobuf
conda install -c conda-forge numpy libprotobuf=3.11.3 protobuf

# Get ONNX
git clone https://github.com/onnx/onnx.git
cd onnx
git submodule update --init --recursive

# Set environment variable for ONNX to use protobuf shared lib
set USE_MSVC_STATIC_RUNTIME=0
set CMAKE_ARGS=-DONNX_USE_PROTOBUF_SHARED_LIBS=ON -DProtobuf_USE_STATIC_LIBS=OFF -DONNX_USE_LITE_PROTO=ON

# Build ONNX
# Optional: Set environment variable `ONNX_ML=1` for onnx-ml

python setup.py install

Build ONNX on ARM 64

If you are building ONNX on an ARM 64 device, please make sure to install the dependencies appropriately.

pip install cython protobuf numpy
sudo apt-get install libprotobuf-dev protobuf-compiler
pip install onnx

Verify Installation

After installation, run

python -c "import onnx"

to verify it works.

Common Errors

Environment variables: USE_MSVC_STATIC_RUNTIME (should be 1 or 0, not ON or OFF)

CMake variables: ONNX_USE_PROTOBUF_SHARED_LIBS, Protobuf_USE_STATIC_LIBS

If ONNX_USE_PROTOBUF_SHARED_LIBS is ON then Protobuf_USE_STATIC_LIBS must be OFF and USE_MSVC_STATIC_RUNTIME must be 0. If ONNX_USE_PROTOBUF_SHARED_LIBS is OFF then Protobuf_USE_STATIC_LIBS must be ON and USE_MSVC_STATIC_RUNTIME can be 1 or 0.

Note that the import onnx command does not work from the source checkout directory; in this case you'll see ModuleNotFoundError: No module named 'onnx.onnx_cpp2py_export'. Change into another directory to fix this error.

Building ONNX on Ubuntu works well, but on CentOS/RHEL and other ManyLinux systems, you might need to open the CMakeLists file and replace all instances of /lib with /lib64.

If you want to build ONNX on Debug mode, remember to set the environment variable DEBUG=1. For debug versions of the dependencies, you need to open the CMakeLists file and append a letter d at the end of the package name lines. For example, NAMES protobuf-lite would become NAMES protobuf-lited.

You can also use the onnx-dev docker image for a Linux-based installation without having to worry about dependency versioning.

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest nbval

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnx-1.9.0.tar.gz (9.8 MB view details)

Uploaded Source

Built Distributions

onnx-1.9.0-cp39-cp39-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

onnx-1.9.0-cp39-cp39-win32.whl (11.1 MB view details)

Uploaded CPython 3.9 Windows x86

onnx-1.9.0-cp39-cp39-manylinux2010_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

onnx-1.9.0-cp39-cp39-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

onnx-1.9.0-cp39-cp39-macosx_10_12_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

onnx-1.9.0-cp38-cp38-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

onnx-1.9.0-cp38-cp38-win32.whl (11.1 MB view details)

Uploaded CPython 3.8 Windows x86

onnx-1.9.0-cp38-cp38-manylinux2010_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

onnx-1.9.0-cp38-cp38-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

onnx-1.9.0-cp38-cp38-macosx_10_12_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

onnx-1.9.0-cp37-cp37m-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.7m Windows x86-64

onnx-1.9.0-cp37-cp37m-win32.whl (11.1 MB view details)

Uploaded CPython 3.7m Windows x86

onnx-1.9.0-cp37-cp37m-manylinux2010_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

onnx-1.9.0-cp37-cp37m-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

onnx-1.9.0-cp37-cp37m-macosx_10_12_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.7m macOS 10.12+ x86-64

onnx-1.9.0-cp36-cp36m-win_amd64.whl (11.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

onnx-1.9.0-cp36-cp36m-win32.whl (11.1 MB view details)

Uploaded CPython 3.6m Windows x86

onnx-1.9.0-cp36-cp36m-manylinux2010_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

onnx-1.9.0-cp36-cp36m-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

onnx-1.9.0-cp36-cp36m-macosx_10_12_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

File details

Details for the file onnx-1.9.0.tar.gz.

File metadata

  • Download URL: onnx-1.9.0.tar.gz
  • Upload date:
  • Size: 9.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0.tar.gz
Algorithm Hash digest
SHA256 a9055a654c4dd87b45ce59f1e08371686937cad554471eadf6826df1bb125b7a
MD5 7e51fab01ecd7089458872e023c1ae5c
BLAKE2b-256 73e95b953497c0e36df589fc60cc6c6b35a65eb67d9ad1e45a9163663e43426e

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 abd9ab9b7c90f6885d417b979a4c94d6046ad7ce8d058fd0f469d5c50d5c1908
MD5 134054eb8b0b8c17f6b367502db6b509
BLAKE2b-256 d03e4b52e1a569edaae5b1e182dffa3d8ef9e8eb94f057a04871754359e65a14

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: onnx-1.9.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2380520f71bd76be02f0e4e65a58dba0b59e2229a30a54fa80d6407bb3775e5b
MD5 0759a2562804a9c00eb64c97508349fd
BLAKE2b-256 e9d481909a5b190505b954387a528f382dd758c7f5d786dfcd1b7aed8b8bac37

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 348c7968cfd03916d703d52c6f63a946a33197ad2195142be1a6789162bcb614
MD5 3e165efe524d9105ef3210da674a65c0
BLAKE2b-256 3c28da16de13cd725713770f40d2ca5e29e669ec120d417b511db0fe78511f4d

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.9.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 43f63a78aff55ee732a7cb4d333b9db85601e14418d041c17671059f9596e5e1
MD5 2e4d5af916747c9c27d6ffe9db02e30f
BLAKE2b-256 bbb837e9ef1816bdde4942db176af83a73ebe5fa3179494f02aebd360216b2de

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp39-cp39-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.9, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 60fea75e9147dec520f2231dd3549ac0d429f976c2b0c429e32c98ae7e548a11
MD5 5e799e5da8b8538e5851b420e88e0dd1
BLAKE2b-256 b91f278ecbbf8ed574fb66ef58ff3ccf5a7d2fef4bb1c4fa788d731576d6bd36

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7bd6ad02f63ce4226a1ea30a4aa80e6ac5c555ad52e0dd61a80b0a39052f1994
MD5 f2e246786391535e0b8ce2dfc6c07bae
BLAKE2b-256 e9c865d40795a57ca35a6102e7d0433e9ee63a65527d59bf7cbc5af1561f2f59

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: onnx-1.9.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 aef24defef248625aeb37c24f1b014b5f6fc2acdda0c4f52f6c9bdad02a17ccb
MD5 e35942d5d7080296c3da1849c0f22c47
BLAKE2b-256 fff83c63a97ace8c904d0c95bf83d8d8b5c7b492cad56f4315d6071dab76619f

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9e8026d49340eb7b5eb8bee25028a4a4b6c4b1c55f9fee72ad3ab964f1dc62d6
MD5 066fd0aa5611e2fe25395f0fa3dcb86e
BLAKE2b-256 08755d7090900a1c3e94549c93fca829f94e03689ee90519c6d57fc4794ada3d

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.9.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b5ba35be377c19792d0b710e7f50f81c5d99971718414f6f95648c80d49e5449
MD5 09a4f8283ed837f4cd129f71fece0810
BLAKE2b-256 94155be9106c676850e2ebe813052ce1dc0f5732cdd0fd340fbb9c6269f539e2

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp38-cp38-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.8, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c74bb7068653ac7ecac3aa674d40652d65bce47090e8d0eb6a988f40dd5f0f78
MD5 54d07531dd80c099d26ed945a6daa7bf
BLAKE2b-256 d0b459706ead59bfc1884c46d8301b28b0ecbb9370ceb87fc1af0e3da1ded106

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1dc523a34ca9746c5d43a50efd4f71e04f36d548dcf05ef4bd7ca91f834bb3ad
MD5 bd536d4ae216b4f48efc5d7da435be50
BLAKE2b-256 853c4d6adf28eecb739ab8ed693d881898ca2e88d8d38c7d4b4980354bb7ac02

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: onnx-1.9.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 154301728c91aa475ad8d8eb901216eef2a48ef9ed414ee13bfe4b82a38326c6
MD5 88005cd30c5b1ac30043eb25f137f88c
BLAKE2b-256 53333f8926aad2cf139ca66f2a0e65a3937f553aaf59535348ea5f11e6433b4a

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a5fe019aa33098727d04f4598ebe6edca26a1008092761225acd732b2f62354b
MD5 60186589a59c1b0ff8bc9c79c1867294
BLAKE2b-256 3f9b54c950d3256e27f970a83cd0504efb183a24312702deed0179453316dbd0

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.9.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5e70148cd4d9ed97eeef3690ec0a78ebfed585184f3e286a6f7d2526c3a7bd34
MD5 ec27e83bb3119c5eb7b5b140a0fbe770
BLAKE2b-256 f3a35aea3606b8151f95c72f300271ab16f478dd69dcb1de5861926def4f90c0

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp37-cp37m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp37-cp37m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.7m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp37-cp37m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 34062d0fde8c49fba96c8c0c02a087533f8e943c2459f2893c540ddc6a11aaf6
MD5 08013a8c15dfa519ad8ca014e6ba6fb6
BLAKE2b-256 aa9580b726f2b21250697fb60b9c59e3832b6f3a6bf4249b905b259d69f6aadf

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6f4b1e37c1ff5f3e16480a458d07d26c6c798deedd20fa258627505ec8646d26
MD5 04ce512a4b27233efc76032871fe3b87
BLAKE2b-256 a4ad3ea5fd5a7791099218ca529cb6b74ca031b7ba8a5ed99b4b494215adce32

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: onnx-1.9.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0c3082f038642479076dd4887055007049cf18b1f5752c4a5839da056982ec79
MD5 70517955db1682fb10c7cb1f64c2f71d
BLAKE2b-256 bbedc667afe4dd04b16d9d8a61547b956369ee36ca3befb21743d31517edac3d

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 685b670336ab23bc03c6112d164cfcc58bd4e27e7aa2bd73c917e1a3b973f609
MD5 8c94b788f19cbbe0082a932b7ba5ff2d
BLAKE2b-256 701e24174ab7390ae3590d33ef6836880772e02d15b9d69372d92dad268db0c3

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: onnx-1.9.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 71576e5088bd0e93f749a8a849b971b338f4f69a4d4895d0424730d1dac76a54
MD5 9064c19064915fa294e30fc512d79325
BLAKE2b-256 fb00f1a15d7201e817dfec20a2f987a15adcd800ca96e5391c1f019d8b07856d

See more details on using hashes here.

File details

Details for the file onnx-1.9.0-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

  • Download URL: onnx-1.9.0-cp36-cp36m-macosx_10_12_x86_64.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.6m, macOS 10.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.7

File hashes

Hashes for onnx-1.9.0-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0377f223ad45944fd51992384af2ca464e5c5f22b3caa76abc24d8cf17d4f2b8
MD5 cce0e135e0514c23a6a8ec692c7eac2c
BLAKE2b-256 b3fcc8d5c8c61ba021717a446b4859ffab7065809a7caed3965a0c7bcd27cbae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page