Skip to main content

Custom ONNX operators and converters

Project description

https://raw.githubusercontent.com/sdpython/onnxcustom/master/doc/_static/logo.png

documentation

Tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime. The module must be compiled to be used inplace:

python setup.py build_ext --inplace

Generate the setup in subfolder dist:

python setup.py sdist

Generate the documentation in folder dist/html:

python -m sphinx -T -b html doc dist/html

Run the unit tests:

python -m unittest discover tests

Or:

python -m pytest

To check style:

python -m flake8 onnxcustom tests examples

The function check or the command line python -m onnxcustom check checks the module is properly installed and returns processing time for a couple of functions or simply:

import onnxcustom
onnxcustom.check()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnxcustom-0.1.0.tar.gz (45.2 kB view details)

Uploaded Source

File details

Details for the file onnxcustom-0.1.0.tar.gz.

File metadata

  • Download URL: onnxcustom-0.1.0.tar.gz
  • Upload date:
  • Size: 45.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for onnxcustom-0.1.0.tar.gz
Algorithm Hash digest
SHA256 7c9b8ba3146be27047b30a8b4c64e8c0778d4569ee5cca059d110bdb3c0a11ef
MD5 4c65cb8737a4afd09865c704d0e69788
BLAKE2b-256 0a676cbf832c96808ca5cac716b155363a646a74b29118c318d056ef5da771eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page