Skip to main content

Extends scikit-learn with a couple of new models, transformers, metrics, plotting.

Project description

https://circleci.com/gh/sdpython/onnxcustom/tree/master.svg?style=svg Build status Build Status Windows https://codecov.io/gh/sdpython/onnxcustom/branch/master/graph/badge.svg https://badge.fury.io/py/onnxcustom.svg GitHub Issues MIT License Downloads Forks Stars size

onnxcustom: custom ONNX

https://raw.githubusercontent.com/sdpython/deeponnxcustom/master/_doc/sphinxdoc/source/phdoc_static/project_ico.png

documentation

Tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime. The module must be compiled to be used inplace:

python setup.py build_ext --inplace

Generate the setup in subfolder dist:

python setup.py sdist

Generate the documentation in folder dist/html:

python setup.py build_sphinx

Run the unit tests:

python setup.py unittests

To check style:

python -m flake8 onnxcustom tests examples

The function check or the command line python -m onnxcustom check checks the module is properly installed and returns processing time for a couple of functions or simply:

import onnxcustom
onnxcustom.check()

This tutorial has been merged into sklearn-onnx documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnxcustom-0.2.122.tar.gz (32.4 kB view details)

Uploaded Source

Built Distribution

onnxcustom-0.2.122-py3-none-any.whl (32.8 kB view details)

Uploaded Python 3

File details

Details for the file onnxcustom-0.2.122.tar.gz.

File metadata

  • Download URL: onnxcustom-0.2.122.tar.gz
  • Upload date:
  • Size: 32.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for onnxcustom-0.2.122.tar.gz
Algorithm Hash digest
SHA256 3e28a4d0680ae0936a9aa9c5c900d722a7438a951d3e5f1d86bc213f67b5bb3f
MD5 45a07ecf699b9d8fbd0775645d6e6f32
BLAKE2b-256 bd6a9c9111e55cef5901478e7d6d31ee72f0a5ab5bc97ce9c0997b539e9aae5e

See more details on using hashes here.

File details

Details for the file onnxcustom-0.2.122-py3-none-any.whl.

File metadata

  • Download URL: onnxcustom-0.2.122-py3-none-any.whl
  • Upload date:
  • Size: 32.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for onnxcustom-0.2.122-py3-none-any.whl
Algorithm Hash digest
SHA256 3443ba8bc5cf6acbd32e8099ddd0a55755d5ab738af3621a6bbfa77da817a7a1
MD5 864448e19f499de5d5960a36d943242a
BLAKE2b-256 e80eb3259bbc4b838d46e5af097f2865e749e81dbb9fcfae9b4067bfbe7e2928

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page