Skip to main content

Extends scikit-learn with a couple of new models, transformers, metrics, plotting.

Project description

https://circleci.com/gh/sdpython/onnxcustom/tree/master.svg?style=svg Build status Build Status Windows https://codecov.io/gh/sdpython/onnxcustom/branch/master/graph/badge.svg https://badge.fury.io/py/onnxcustom.svg GitHub Issues MIT License Downloads Forks Stars size

onnxcustom: custom ONNX

https://raw.githubusercontent.com/sdpython/onnxcustom/master/_doc/sphinxdoc/source/phdoc_static/project_ico.png

documentation

Examples, tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime, or even train with ONNX / onnxruntime.

The function check or the command line python -m onnxcustom check checks the module is properly installed and returns processing time for a couple of functions or simply:

import onnxcustom
onnxcustom.check()

Most of the tutorial has been merged into sklearn-onnx documentation. Among the tools this package implements, you may find:

  • a tool to convert NVidia Profilder logs into a dataframe

  • a SGD optimizer similar to what scikit-learn implements but based on onnxruntime-training and able to train an CPU and GPU.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnxcustom-0.3.245.tar.gz (58.3 kB view details)

Uploaded Source

Built Distribution

onnxcustom-0.3.245-py3-none-any.whl (66.5 kB view details)

Uploaded Python 3

File details

Details for the file onnxcustom-0.3.245.tar.gz.

File metadata

  • Download URL: onnxcustom-0.3.245.tar.gz
  • Upload date:
  • Size: 58.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for onnxcustom-0.3.245.tar.gz
Algorithm Hash digest
SHA256 ced04872ae28a2fc7fc75e220659c1718c9b6958f173f8d96fbd7bcbb69d2632
MD5 3898fdab9d374eda7d36da6401b8ae92
BLAKE2b-256 2818b73bdc6240fba4e207e30cb9a3967a519a1025562ee5fb2f5b7b72630c81

See more details on using hashes here.

File details

Details for the file onnxcustom-0.3.245-py3-none-any.whl.

File metadata

  • Download URL: onnxcustom-0.3.245-py3-none-any.whl
  • Upload date:
  • Size: 66.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for onnxcustom-0.3.245-py3-none-any.whl
Algorithm Hash digest
SHA256 091a13c7bc197890091a12b01078157437fe9e017a797ecd12e358f2839dc1f8
MD5 e82a7401badf93e6c8c20e3b826965f0
BLAKE2b-256 91f28debe31cca6c20d10e284b53861ae3917852c1193e364d4c0f87ab13b99f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page