Skip to main content

Extends scikit-learn with a couple of new models, transformers, metrics, plotting.

Project description

https://circleci.com/gh/sdpython/onnxcustom/tree/master.svg?style=svg Build status Build Status Windows https://codecov.io/gh/sdpython/onnxcustom/branch/master/graph/badge.svg https://badge.fury.io/py/onnxcustom.svg GitHub Issues MIT License Downloads Forks Stars size

onnxcustom: custom ONNX

https://raw.githubusercontent.com/sdpython/onnxcustom/master/_doc/sphinxdoc/source/phdoc_static/project_ico.png

documentation

Examples, tutorial on how to convert machine learned models into ONNX, implement your own converter or runtime, or even train with ONNX / onnxruntime.

The function check or the command line python -m onnxcustom check checks the module is properly installed and returns processing time for a couple of functions or simply:

import onnxcustom
onnxcustom.check()

Most of the tutorial has been merged into sklearn-onnx documentation. Among the tools this package implements, you may find:

  • a tool to convert NVidia Profilder logs into a dataframe

  • a SGD optimizer similar to what scikit-learn implements but based on onnxruntime-training and able to train an CPU and GPU.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

onnxcustom-0.4.274.tar.gz (65.6 kB view details)

Uploaded Source

Built Distribution

onnxcustom-0.4.274-py3-none-any.whl (77.9 kB view details)

Uploaded Python 3

File details

Details for the file onnxcustom-0.4.274.tar.gz.

File metadata

  • Download URL: onnxcustom-0.4.274.tar.gz
  • Upload date:
  • Size: 65.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for onnxcustom-0.4.274.tar.gz
Algorithm Hash digest
SHA256 477c69697c70b29dd45dc0647c61eaf466d3009a5bf35184ca7352fc826c9855
MD5 3f446238a36e8f71a4710b34046aacf4
BLAKE2b-256 a0aa6b4e5cbdbc00f238301f3091e80c46a7fb3db39b2153ed06d02ea8c55a4f

See more details on using hashes here.

File details

Details for the file onnxcustom-0.4.274-py3-none-any.whl.

File metadata

  • Download URL: onnxcustom-0.4.274-py3-none-any.whl
  • Upload date:
  • Size: 77.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.5

File hashes

Hashes for onnxcustom-0.4.274-py3-none-any.whl
Algorithm Hash digest
SHA256 50d9cdade94c51001a2992eb9e1f00ede7999b81020c8813132afea0fc004968
MD5 0852a0f0c9138562c6c4e4402d4789ba
BLAKE2b-256 73abfa61e2cfb50ad24565250ce9c015acb97a8190f50aebca3a1f61470c3144

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page