Skip to main content

ONNX Runtime Runtime Python bindings

Project description

ONNX Runtime (Preview) enables high-performance evaluation of trained machine learning (ML) models while keeping resource usage low. Building on Microsoft’s dedication to the Open Neural Network Exchange (ONNX) community, it supports traditional ML models as well as Deep Learning algorithms in the ONNX-ML format. Documentation is available at Python Bindings for ONNX Runtime.

Example

The following example demonstrates an end-to-end example in a very common scenario. A model is trained with scikit-learn but it has to run very fast in a optimized environment. The model is then converted into ONNX format and ONNX Runtime replaces scikit-learn to compute the predictions.

# Train a model.
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForest
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y)
clr = RandomForest()
clr.fit(X_train, y_train)

# Convert into ONNX format with onnxmltools
from onnxmltools import convert_sklearn
from onnxmltools.utils import save_model
from onnxmltools.convert.common.data_types import FloatTensorType
initial_type = [('float_input', FloatTensorType([1, 4]))]
onx = convert_sklearn(clr, initial_types=initial_type)
save_model(onx, "rf_iris.onnx")

# Compute the prediction with ONNX Runtime
import onnxruntime as rt
import numpy
sess = rt.InferenceSession("rf_iris.onnx")
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

onnxruntime-0.1.2-cp37-cp37m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m

onnxruntime-0.1.2-cp36-cp36m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m

onnxruntime-0.1.2-cp35-cp35m-manylinux1_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.5m

File details

Details for the file onnxruntime-0.1.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: onnxruntime-0.1.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.0

File hashes

Hashes for onnxruntime-0.1.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 045b943c1cab7ae2ec40cd12e6e52596860fa2fddd72cd25168795e9c6912320
MD5 ac43c8b622359b16ad42afff786d41c5
BLAKE2b-256 17d974e592de97d37763e2aac98782eaaaa17228ed82bc6d4314211a2e059e2c

See more details on using hashes here.

File details

Details for the file onnxruntime-0.1.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: onnxruntime-0.1.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.0

File hashes

Hashes for onnxruntime-0.1.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 63b26ed59840cf9de695cb06319421cc40fd4863fe55f347493777041dd31385
MD5 e1fd1d62b12dec58ce4c81eebdbde24f
BLAKE2b-256 77c455a23c94f083aa41a68b0385f707db71a091b888142b2299b0313a0c5851

See more details on using hashes here.

File details

Details for the file onnxruntime-0.1.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: onnxruntime-0.1.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.6.0

File hashes

Hashes for onnxruntime-0.1.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33d0310b4de56a7e66cd246d57cf3d3aa458736ec91c3016882d3b0f80ee9b2a
MD5 818cd687a745537d071c09410e0dfd0b
BLAKE2b-256 e75bf4564ee4e8c96053f3c027f14e9fe42b08e051e3cbc173863a0b42872cf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page