An SDK for building applications to work with OpenStack
Project description
openstacksdk is a client library for building applications to work with OpenStack clouds. The project aims to provide a consistent and complete set of interactions with OpenStack’s many services, along with complete documentation, examples, and tools.
It also contains an abstraction interface layer. Clouds can do many things, but there are probably only about 10 of them that most people care about with any regularity. If you want to do complicated things, the per-service oriented portions of the SDK are for you. However, if what you want is to be able to write an application that talks to any OpenStack cloud regardless of configuration, then the Cloud Abstraction layer is for you.
More information about the history of openstacksdk can be found at https://docs.openstack.org/openstacksdk/latest/contributor/history.html
Getting started
Authentication and connection management
openstacksdk aims to talk to any OpenStack cloud. To do this, it requires a configuration file. openstacksdk favours clouds.yaml files, but can also use environment variables. The clouds.yaml file should be provided by your cloud provider or deployment tooling. An example:
clouds:
mordred:
region_name: Dallas
auth:
username: 'mordred'
password: XXXXXXX
project_name: 'demo'
auth_url: 'https://identity.example.com'
openstacksdk will look for clouds.yaml files in the following locations:
If set, the path indicated by the OS_CLIENT_CONFIG_FILE environment variable
. (the current directory)
$HOME/.config/openstack
/etc/openstack
You can create a connection using the openstack.connect function. The cloud name can be either passed directly to this function or specified using the OS_CLOUD environment variable. If you don’t have a clouds.yaml file and instead use environment variables for configuration then you can use the special envvars cloud name to load configuration from the environment. For example:
import openstack
# Initialize connection from a clouds.yaml by passing a cloud name
conn_from_cloud_name = openstack.connect(cloud='mordred')
# Initialize connection from a clouds.yaml using the OS_CLOUD envvar
conn_from_os_cloud = openstack.connect()
# Initialize connection from environment variables
conn_from_env_vars = openstack.connect(cloud='envvars')
The cloud layer
openstacksdk consists of four layers which all build on top of each other. The highest level layer is the cloud layer. Cloud layer methods are available via the top level Connection object returned by openstack.connect. For example:
import openstack
# Initialize and turn on debug logging
openstack.enable_logging(debug=True)
# Initialize connection
conn = openstack.connect(cloud='mordred')
# List the servers
for server in conn.list_servers():
print(server.to_dict())
The cloud layer is based on logical operations that can potentially touch multiple services. The benefit of this layer is mostly seen in more complicated operations that take multiple steps and where the steps vary across providers. For example:
import openstack
# Initialize and turn on debug logging
openstack.enable_logging(debug=True)
# Initialize connection
conn = openstack.connect(cloud='mordred')
# Upload an image to the cloud
image = conn.create_image(
'ubuntu-trusty', filename='ubuntu-trusty.qcow2', wait=True)
# Find a flavor with at least 512M of RAM
flavor = conn.get_flavor_by_ram(512)
# Boot a server, wait for it to boot, and then do whatever is needed
# to get a public IP address for it.
conn.create_server(
'my-server', image=image, flavor=flavor, wait=True, auto_ip=True)
The proxy layer
The next layer is the proxy layer. Most users will make use of this layer. The proxy layer is service-specific, so methods will be available under service-specific connection attributes of the Connection object such as compute, block_storage, image etc. For example:
import openstack
# Initialize and turn on debug logging
openstack.enable_logging(debug=True)
# Initialize connection
conn = openstack.connect(cloud='mordred')
# List the servers
for server in conn.compute.servers():
print(server.to_dict())
The resource layer
Below this there is the resource layer. This provides support for the basic CRUD operations supported by REST APIs and is the base building block for the other layers. You typically will not need to use this directly but it can be helpful for operations where you already have a Resource object to hand. For example:
import openstack
import openstack.config.loader
import openstack.compute.v2.server
# Initialize and turn on debug logging
openstack.enable_logging(debug=True)
# Initialize connection
conn = openstack.connect(cloud='mordred')
# List the servers
for server in openstack.compute.v2.server.Server.list(session=conn.compute):
print(server.to_dict())
The raw HTTP layer
Finally, there is the raw HTTP layer. This exposes raw HTTP semantics and is effectively a wrapper around the requests API with added smarts to handle stuff like authentication and version management. As such, you can use the requests API methods you know and love, like get, post and put, and expect to receive a requests.Response object in response (unlike the other layers, which mostly all return objects that subclass openstack.resource.Resource). Like the resource layer, you will typically not need to use this directly but it can be helpful to interact with APIs that have not or will not be supported by openstacksdk. For example:
import openstack
# Initialize and turn on debug logging
openstack.enable_logging(debug=True)
# Initialize connection
conn = openstack.connect(cloud='mordred')
# List servers
for server in openstack.compute.get('/servers').json():
print(server)
Configuration
openstacksdk uses the openstack.config module to parse configuration. openstack.config will find cloud configuration for as few as one cloud and as many as you want to put in a config file. It will read environment variables and config files, and it also contains some vendor specific default values so that you don’t have to know extra info to use OpenStack
If you have a config file, you will get the clouds listed in it
If you have environment variables, you will get a cloud named envvars
If you have neither, you will get a cloud named defaults with base defaults
You can view the configuration identified by openstacksdk in your current environment by running openstack.config.loader. For example:
$ python -m openstack.config.loader
More information at https://docs.openstack.org/openstacksdk/latest/user/config/configuration.html
Supported services
The following services are currently supported. A full list of all available OpenStack service can be found in the Project Navigator.
Service |
Description |
Cloud Layer |
Proxy & Resource Layer |
---|---|---|---|
Compute |
|||
Nova |
Compute |
✔ |
✔ (openstack.compute) |
Hardware Lifecycle |
|||
Ironic |
Bare metal provisioning |
✔ |
✔ (openstack.baremetal, openstack.baremetal_introspection) |
Cyborg |
Lifecycle management of accelerators |
✔ |
✔ (openstack.accelerator) |
Storage |
|||
Cinder |
Block storage |
✔ |
✔ (openstack.block_storage) |
Swift |
Object store |
✔ |
✔ (openstack.object_store) |
Cinder |
Shared filesystems |
✔ |
✔ (openstack.shared_file_system) |
Networking |
|||
Neutron |
Networking |
✔ |
✔ (openstack.network) |
Octavia |
Load balancing |
✔ |
✔ (openstack.load_balancer) |
Designate |
DNS |
✔ |
✔ (openstack.dns) |
Shared services |
|||
Keystone |
Identity |
✔ |
✔ (openstack.identity) |
Placement |
Placement |
✔ |
✔ (openstack.placement) |
Glance |
Image storage |
✔ |
✔ (openstack.image) |
Barbican |
Key management |
✔ |
✔ (openstack.key_manager) |
Workload provisioning |
|||
Magnum |
Container orchestration engine provisioning |
✔ |
✔ (openstack.container_infrastructure_management) |
Orchestration |
|||
Heat |
Orchestration |
✔ |
✔ (openstack.orchestration) |
Senlin |
Clustering |
✔ |
✔ (openstack.clustering) |
Mistral |
Workflow |
✔ |
✔ (openstack.workflow) |
Zaqar |
Messaging |
✔ |
✔ (openstack.message) |
Application lifecycle |
|||
Masakari |
Instances high availability service |
✔ |
✔ (openstack.instance_ha) |
Links
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file openstacksdk-4.1.0.tar.gz
.
File metadata
- Download URL: openstacksdk-4.1.0.tar.gz
- Upload date:
- Size: 1.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ccac9b158e3d36b959a3bdce71bd4f883d7758fef6856841c855ff2b22c941ea |
|
MD5 | d5eee8accff220eedf3c6ef652ac5dff |
|
BLAKE2b-256 | 327b42529e0014cf5c3e1a4f4c07ed43c1df357d57f5f61ca15cbdbfdd229654 |
File details
Details for the file openstacksdk-4.1.0-py3-none-any.whl
.
File metadata
- Download URL: openstacksdk-4.1.0-py3-none-any.whl
- Upload date:
- Size: 1.7 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6821bd6f923fe6311948d1d2c01c0a11a62e8b6bcf3d11c2a18acafc8ab6311 |
|
MD5 | a61b697e776e645c2c89ee4b4fd8082e |
|
BLAKE2b-256 | b234efc14b97011a42190e34ed1fc210f09f969b0b49e51130674aa683ab97f8 |