Skip to main content

OpenVINO(TM) Development Tools

Project description

OpenVINO™ Development Tools

Introduction

OpenVINO™ toolkit is a comprehensive toolkit for quickly developing applications and solutions that solve a variety of tasks including emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, and many others. Based on latest generations of artificial neural networks, including Convolutional Neural Networks (CNNs), recurrent and attention-based networks, the toolkit extends computer vision and non-vision workloads across Intel® hardware, maximizing performance. It accelerates applications with high-performance, AI and deep learning inference deployed from edge to cloud.

The developer package includes the following components installed by default:

Component Console Script Description
Model Optimizer mo Model Optimizer imports, converts, and optimizes models that were trained in popular frameworks to a format usable by OpenVINO components. 
Supported frameworks include Caffe*, TensorFlow*, MXNet*, PaddlePaddle*, and ONNX*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.
Accuracy Checker and
Annotation Converter
accuracy_check
convert_annotation
Accuracy Checker is a deep learning accuracy validation tool that allows you to collect accuracy metrics against popular datasets. The main advantages of the tool are the flexibility of configuration and a set of supported datasets, preprocessing, postprocessing, and metrics.
Annotation Converter is a utility that prepares datasets for evaluation with Accuracy Checker.
Post-Training Optimization Tool pot Post-Training Optimization Tool allows you to optimize trained models with advanced capabilities, such as quantization and low-precision optimizations, without the need to retrain or fine-tune models. Optimizations are also available through the API.
Model Downloader and other Open Model Zoo tools omz_downloader
omz_converter
omz_quantizer
omz_info_dumper
Model Downloader is a tool for getting access to the collection of high-quality and extremely fast pre-trained deep learning public and Intel-trained models. These free pre-trained models can be used to speed up the development and production deployment process without training your own models. The tool downloads model files from online sources and, if necessary, patches them to make them more usable with Model Optimizer. A number of additional tools are also provided to automate the process of working with downloaded models:
Model Converter is a tool for converting Open Model Zoo models that are stored in an original deep learning framework format into the OpenVINO Intermediate Representation (IR) using Model Optimizer.
Model Quantizer is a tool for automatic quantization of full-precision models in the IR format into low-precision versions using the Post-Training Optimization Tool.
Model Information Dumper is a helper utility for dumping information about the models to a stable, machine-readable format.

The developer package also installs the OpenVINO™ Runtime package as a dependency.

The runtime package installs the following components:

Component Description
OpenVINO™ Runtime This is the engine that runs the deep learning model. It includes a set of libraries for an easy inference integration into your applications.

System Requirements

The complete list of supported hardware is available in the Release Notes.

The table below lists the supported operating systems and Python* versions required to run the installation.

Supported Operating System Python* Version (64-bit)
Ubuntu* 18.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8
Ubuntu* 20.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8, 3.9
Red Hat* Enterprise Linux* 8, 64-bit 3.6, 3.8
macOS* 10.15.x 3.6, 3.7, 3.8, 3.9
Windows 10*, 64-bit 3.6, 3.7, 3.8, 3.9

NOTE: This package can be installed on other versions of macOS, Linux and Windows, but only the specific versions above are fully validated.

NOTE: The current version of the OpenVINO™ Runtime for macOS* supports inference on Intel® CPUs only.

Install the OpenVINO™ Development Tools Package

Step 1. Set Up Python Virtual Environment

To avoid dependency conflicts, use a virtual environment. Skip this step only if you do want to install all dependencies globally.

Create virtual environment:

python -m pip install --user virtualenv 
python -m venv openvino_env

NOTE: On Linux and macOS, you may need to type python3 instead of python. You may also need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Linux and macOS:

source openvino_env/bin/activate

On Windows:

openvino_env\Scripts\activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

To install and configure the components of the development package for working with specific frameworks, use the pip install openvino-dev[extras] command, where extras is a list of extras from the table below:

DL Framework Extra
Caffe* caffe
Kaldi* kaldi
MXNet* mxnet
ONNX* onnx
PyTorch* pytorch
TensorFlow* 1.x tensorflow
TensorFlow* 2.x tensorflow2

For example, to install and configure the components for working with TensorFlow 2.x, MXNet and Caffe, use the following command:

pip install openvino-dev[tensorflow2,mxnet,caffe]

NOTE: Support of MO in TensorFlow 1.x environment is deprecated. Use TensorFlow 2.x environment to convert both TensorFlow 1.x and 2.x models

Step 5. Verify that the Package Is Installed

  • To verify that the developer package is properly installed, run the command below (this may take a few seconds):

    mo -h
    

    You will see the help message for Model Optimizer if installation finished successfully.

  • To verify that OpenVINO Runtime from the runtime package is available, run the command below:

    python -c "from openvino.runtime import Core"
    

    If installation was successful, you will not see any error messages (no console output).

Troubleshooting

zsh: no matches found : openvino-dev[...]

If you use zsh (Z shell) interpreter, that is the default shell for macOS starting with version 10.15 (Catalina), you may encounter the following error while installing openvino-dev package with extras:

pip install openvino-dev[tensorflow2,mxnet,caffe]
zsh: no matches found: openvino-dev[tensorflow2,mxnet,caffe]

By default zsh interprets square brackets as an expression for pattern matching. To resolve this issue, you need to escape the command with quotes:

pip install 'openvino-dev[tensorflow2,mxnet,caffe]'

To avoid such issues you can also disable globbing for PIP commands by defining an alias in ~/.zshrc file:

alias pip='noglob pip'

Error: Microsoft Visual C++ 14.0 is required. Get it with "Build Tools for Visual Studio"

On Windows* some dependencies may require compilation from source when installing. To resolve this issue, you need to install Build Tools for Visual Studio* 2019 and repeat package installation.

ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu* 18.04, execute the following command:

sudo apt-get install libpython3.7

Additional Resources

Copyright © 2018-2022 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file openvino_dev-2022.1.0.dev20220316-7009-py3-none-any.whl.

File metadata

  • Download URL: openvino_dev-2022.1.0.dev20220316-7009-py3-none-any.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.0

File hashes

Hashes for openvino_dev-2022.1.0.dev20220316-7009-py3-none-any.whl
Algorithm Hash digest
SHA256 bf5422cd21a756830dc6618ad58c3e2ba8e54288b285c2aa4b2185f23c4b6ceb
MD5 bbe350f6ba488739d48079a7d68f0de7
BLAKE2b-256 af6ee52fbb1690b0664b6ffbe1f9c5dcd0d79542ad99ed13bf79ac1d96ac6944

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page