Skip to main content

OpenVINO(TM) Development Tools

Project description

OpenVINO™ Development Tools

Intel® Distribution of OpenVINO™ toolkit is an open-source toolkit for optimizing and deploying AI inference. It can be used to develop applications and solutions based on deep learning tasks, such as: emulation of human vision, automatic speech recognition, natural language processing, recommendation systems, etc. It provides high-performance and rich deployment options, from edge to cloud.

OpenVINO™ Development Tools enables you to download models from Open Model Zoo, convert your own models to OpenVINO IR, as well as optimize and tune pre-trained deep learning models. See What's in the Package for more information.

System Requirements

Before you start the installation, check the supported operating systems and required Python* versions. The complete list of supported hardware is available in the Release Notes.

Supported Operating System Python* Version (64-bit)
Ubuntu* 18.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8
Ubuntu* 20.04 long-term support (LTS), 64-bit 3.6, 3.7, 3.8, 3.9
Red Hat* Enterprise Linux* 8, 64-bit 3.6, 3.8
macOS* 10.15.x 3.6, 3.7, 3.8, 3.9
Windows 10*, 64-bit 3.6, 3.7, 3.8, 3.9

C++ libraries are also required for the installation on Windows*. To install that, you can download the Visual Studio Redistributable file (.exe).

NOTE: This package can be installed on other versions of macOS, Linux and Windows, but only the specific versions above are fully validated.

NOTE: The current version of the OpenVINO™ Runtime for macOS* supports inference on Intel® CPUs only.

Install the OpenVINO™ Development Tools Package

Step 1. Set Up Python Virtual Environment

Use a virtual environment to avoid dependency conflicts.

To create a virtual environment, use the following commands:

On Windows:

python -m venv openvino_env

On Linux and macOS:

python3 -m venv openvino_env

NOTE: On Linux and macOS, you may need to install pip. For example, on Ubuntu execute the following command to get pip installed: sudo apt install python3-venv python3-pip.

Step 2. Activate Virtual Environment

On Linux and macOS:

source openvino_env/bin/activate

On Windows:

openvino_env\Scripts\activate

Step 3. Set Up and Update PIP to the Highest Version

Run the command below:

python -m pip install --upgrade pip

Step 4. Install the Package

There are two options to install OpenVINO Development Tools:

Installing Default Components

To install the default components in the package (see the What's in the Package section of this article), use the following command:

pip install openvino-dev

Installing Components for Specific Frameworks

To install and configure the components of the package for working with specific frameworks, use the following command:

pip install openvino-dev[extras]

where extras has the following values:

Extras Value DL Framework
caffe Caffe*
kaldi Kaldi*
mxnet Apache MXNet*
onnx ONNX*
pytorch PyTorch*
tensorflow TensorFlow* 1.x
tensorflow2 TensorFlow* 2.x

For example, to install and configure the components for working with TensorFlow 2.x, Apache MXNet and Caffe, use the following command:

pip install openvino-dev[tensorflow2,mxnet,caffe]

NOTE: Model Optimizer support for TensorFlow 1.x environment has been deprecated. Use TensorFlow 2.x environment to convert both TensorFlow 1.x and 2.x models.

Step 5. Verify that the Package Is Installed

  • To verify that the developer package is properly installed, run the command below (this may take a few seconds):

    mo -h
    

    You will see the help message for Model Optimizer if installation finished successfully.

  • To verify that OpenVINO Runtime from the runtime package is available, run the command below:

    python -c "from openvino.runtime import Core"
    

    If installation was successful, you will not see any error messages (no console output).

What's in the Package?

NOTE: The openvino-dev package installs OpenVINO™ Runtime as a dependency, which is the engine that runs the deep learning model and includes a set of libraries for an easy inference integration into your applications.

In addition, the openvino-dev package installs the following components by default:

Component Console Script Description
Model Optimizer mo Model Optimizer imports, converts, and optimizes models that were trained in popular frameworks to a format usable by OpenVINO components. 
Supported frameworks include Caffe*, TensorFlow*, MXNet*, PaddlePaddle*, and ONNX*.
Benchmark Tool benchmark_app Benchmark Application allows you to estimate deep learning inference performance on supported devices for synchronous and asynchronous modes.
Accuracy Checker and
Annotation Converter
accuracy_check
convert_annotation
Accuracy Checker is a deep learning accuracy validation tool that allows you to collect accuracy metrics against popular datasets. The main advantages of the tool are the flexibility of configuration and a set of supported datasets, preprocessing, postprocessing, and metrics.
Annotation Converter is a utility that prepares datasets for evaluation with Accuracy Checker.
Post-Training Optimization Tool pot Post-Training Optimization Tool allows you to optimize trained models with advanced capabilities, such as quantization and low-precision optimizations, without the need to retrain or fine-tune models.
Model Downloader and other Open Model Zoo tools omz_downloader
omz_converter
omz_quantizer
omz_info_dumper
Model Downloader is a tool for getting access to the collection of high-quality and extremely fast pre-trained deep learning [public](@ref omz_models_group_public) and [Intel](@ref omz_models_group_intel)-trained models. These free pre-trained models can be used to speed up the development and production deployment process without training your own models. The tool downloads model files from online sources and, if necessary, patches them to make them more usable with Model Optimizer. A number of additional tools are also provided to automate the process of working with downloaded models:
Model Converter is a tool for converting Open Model Zoo models that are stored in an original deep learning framework format into the OpenVINO Intermediate Representation (IR) using Model Optimizer.
Model Quantizer is a tool for automatic quantization of full-precision models in the IR format into low-precision versions using the Post-Training Optimization Tool.
Model Information Dumper is a helper utility for dumping information about the models to a stable, machine-readable format.

Troubleshooting

For general troubleshooting steps and issues, see Troubleshooting Guide for OpenVINO Installation. The following sections also provide explanations to several error messages.

zsh: no matches found : openvino-dev[...]

If you use zsh (Z shell) interpreter, that is the default shell for macOS starting with version 10.15 (Catalina), you may encounter the following error while installing openvino-dev package with extras:

pip install openvino-dev[tensorflow2,mxnet,caffe]
zsh: no matches found: openvino-dev[tensorflow2,mxnet,caffe]

By default zsh interprets square brackets as an expression for pattern matching. To resolve this issue, you need to escape the command with quotes:

pip install 'openvino-dev[tensorflow2,mxnet,caffe]'

To avoid such issues you can also disable globbing for PIP commands by defining an alias in ~/.zshrc file:

alias pip='noglob pip'

ERROR:root:Could not find the Inference Engine or nGraph Python API.

On Windows*, some libraries are necessary to run OpenVINO. To resolve this issue, install the C++ redistributable (.exe). You can also view a full download list on the official support page.

ImportError: libpython3.7m.so.1.0: cannot open shared object file: No such file or directory

To resolve missing external dependency on Ubuntu* 18.04, execute the following command:

sudo apt-get install libpython3.7

Additional Resources

Copyright © 2018-2022 Intel Corporation

LEGAL NOTICE: Your use of this software and any required dependent software (the “Software Package”) is subject to the terms and conditions of the Apache 2.0 License for the Software Package, which may also include notices, disclaimers, or license terms for third party or open source software included in or with the Software Package, and your use indicates your acceptance of all such terms. Please refer to the “third-party-programs.txt” or other similarly-named text file included with the Software Package for additional details.

Intel is committed to the respect of human rights and avoiding complicity in human rights abuses, a policy reflected in the Intel Global Human Rights Principles. Accordingly, by accessing the Intel material on this platform you agree that you will not use the material in a product or application that causes or contributes to a violation of an internationally recognized human right.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

openvino_dev-2022.2.0-7713-py3-none-any.whl (5.8 MB view details)

Uploaded Python 3

File details

Details for the file openvino_dev-2022.2.0-7713-py3-none-any.whl.

File metadata

File hashes

Hashes for openvino_dev-2022.2.0-7713-py3-none-any.whl
Algorithm Hash digest
SHA256 6bb731fa67d40ea03bc9379c3d47607e70a831b6c33fe789fe8a29cbcce074c3
MD5 5d7812bb493fb026d8fc6d6d50215c2b
BLAKE2b-256 e990733b4daeae844faef402ec3cabd01c11e025d652ef0e075cdb9e9738d04b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page