Skip to main content

Python bindings for https://github.com/openvinotoolkit/openvino.genai

Project description

OpenVINO™ GenAI Library

OpenVINO™ GenAI is a flavor of OpenVINO™, aiming to simplify running inference of generative AI models. It hides the complexity of the generation process and minimizes the amount of code required.

Install OpenVINO™ GenAI

The OpenVINO™ GenAI flavor is available for installation via Archive and PyPI distributions. To install OpenVINO™ GenAI, refer to the Install Guide.

To build OpenVINO™ GenAI library from source, refer to the Build Instructions.

Usage

Prerequisites

  1. Installed OpenVINO™ GenAI

    If OpenVINO GenAI is installed via archive distribution or built from source, you will need to install additional python dependencies (e.g. optimum-cli for simplified model downloading and exporting, it's not required to install ./samples/requirements.txt for deployment if the model has already been exported):

    # (Optional) Clone OpenVINO GenAI repository if it does not exist
    git clone --recursive https://github.com/openvinotoolkit/openvino.genai.git
    cd openvino.genai
    # Install python dependencies
    python -m pip install ./thirdparty/openvino_tokenizers/[transformers] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release
    python -m pip install --upgrade-strategy eager -r ./samples/requirements.txt
    
  2. A model in OpenVINO IR format

    Download and convert a model with optimum-cli:

    optimum-cli export openvino --model "TinyLlama/TinyLlama-1.1B-Chat-v1.0" --trust-remote-code "TinyLlama-1.1B-Chat-v1.0"
    

LLMPipeline is the main object used for decoding. You can construct it straight away from the folder with the converted model. It will automatically load the main model, tokenizer, detokenizer and default generation configuration.

Python

A simple example:

import openvino_genai as ov_genai
pipe = ov_genai.LLMPipeline(model_path, "CPU")
print(pipe.generate("The Sun is yellow because", max_new_tokens=100))

Calling generate with custom generation config parameters, e.g. config for grouped beam search:

import openvino_genai as ov_genai
pipe = ov_genai.LLMPipeline(model_path, "CPU")

result = pipe.generate("The Sun is yellow because", max_new_tokens=100, num_beam_groups=3, num_beams=15, diversity_penalty=1.5)
print(result)

output:

'it is made up of carbon atoms. The carbon atoms are arranged in a linear pattern, which gives the yellow color. The arrangement of carbon atoms in'

A simple chat in Python:

import openvino_genai as ov_genai
pipe = ov_genai.LLMPipeline(model_path)

config = {'max_new_tokens': 100, 'num_beam_groups': 3, 'num_beams': 15, 'diversity_penalty': 1.5}
pipe.set_generation_config(config)

pipe.start_chat()
while True:
    print('question:')
    prompt = input()
    if prompt == 'Stop!':
        break
    print(pipe(prompt, max_new_tokens=200))
pipe.finish_chat()

Test to compare with Huggingface outputs

C++

A simple example:

#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

int main(int argc, char* argv[]) {
    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");
    std::cout << pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(256));
}

Using group beam search decoding:

#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

int main(int argc, char* argv[]) {
    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");

    ov::genai::GenerationConfig config;
    config.max_new_tokens = 256;
    config.num_beam_groups = 3;
    config.num_beams = 15;
    config.diversity_penalty = 1.0f;

    std::cout << pipe.generate("The Sun is yellow because", config);
}

A simple chat in C++ using grouped beam search decoding:

#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

int main(int argc, char* argv[]) {
    std::string prompt;

    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");
    
    ov::genai::GenerationConfig config;
    config.max_new_tokens = 100;
    config.num_beam_groups = 3;
    config.num_beams = 15;
    config.diversity_penalty = 1.0f;
    
    pipe.start_chat();
    for (;;;) {
        std::cout << "question:\n";
        std::getline(std::cin, prompt);
        if (prompt == "Stop!")
            break;

        std::cout << "answer:\n";
        auto answer = pipe(prompt, config);
        std::cout << answer << std::endl;
    }
    pipe.finish_chat();
}

Streaming example with lambda function:

#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

int main(int argc, char* argv[]) {
    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");
        
    auto streamer = [](std::string word) { 
        std::cout << word << std::flush; 
        // Return flag corresponds whether generation should be stopped.
        // false means continue generation.
        return false;
    };
    std::cout << pipe.generate("The Sun is yellow bacause", ov::genai::streamer(streamer), ov::genai::max_new_tokens(200));
}

Streaming with a custom class:

#include "openvino/genai/streamer_base.hpp"
#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

class CustomStreamer: public ov::genai::StreamerBase {
public:
    bool put(int64_t token) {
        bool stop_flag = false; 
        /* 
        custom decoding/tokens processing code
        tokens_cache.push_back(token);
        std::string text = m_tokenizer.decode(tokens_cache);
        ...
        */
        return stop_flag;  // flag whether generation should be stoped, if true generation stops.
    };

    void end() {
        /* custom finalization */
    };
};

int main(int argc, char* argv[]) {
    CustomStreamer custom_streamer;

    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");
    std::cout << pipe.generate("The Sun is yellow because", ov::genai::streamer(custom_streamer), ov::genai::max_new_tokens(200));
}

Performance Metrics

openvino_genai.PerfMetrics (referred as PerfMetrics for simplicity) is a structure that holds performance metrics for each generate call. PerfMetrics holds fields with mean and standard deviations for the following metrics:

  • Time To the First Token (TTFT), ms
  • Time per Output Token (TPOT), ms/token
  • Generate total duration, ms
  • Tokenization duration, ms
  • Detokenization duration, ms
  • Throughput, tokens/s

and:

  • Load time, ms
  • Number of generated tokens
  • Number of tokens in the input prompt

Performance metrics are stored either in the DecodedResults or EncodedResults perf_metric field. Additionally to the fields mentioned above, PerfMetrics has a member raw_metrics of type openvino_genai.RawPerfMetrics (referred to as RawPerfMetrics for simplicity) that contains raw values for the durations of each batch of new token generation, tokenization durations, detokenization durations, and more. These raw metrics are accessible if you wish to calculate your own statistical values such as median or percentiles. However, since mean and standard deviation values are usually sufficient, we will focus on PerfMetrics.

import openvino_genai as ov_genai
pipe = ov_genai.LLMPipeline(model_path, "CPU")
result = pipe.generate(["The Sun is yellow because"], max_new_tokens=20)
perf_metrics = result.perf_metrics

print(f'Generate duration: {perf_metrics.get_generate_duration().mean:.2f}')
print(f'TTFT: {perf_metrics.get_ttft().mean:.2f} ms')
print(f'TPOT: {perf_metrics.get_tpot().mean:.2f} ms/token')
print(f'Throughput: {perf_metrics.get_throughput()get_.mean():.2f} tokens/s')
#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

int main(int argc, char* argv[]) {
    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");
    auto result = pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(20));
    auto perf_metrics = result.perf_metrics;
    
    std::cout << std::fixed << std::setprecision(2);
    std::cout << "Generate duration: " << perf_metrics.get_generate_duration().mean << " ms" << std::endl;
    std::cout << "TTFT: " << metrics.get_ttft().mean  << " ms" << std::endl;
    std::cout << "TPOT: " << metrics.get_tpot().mean  << " ms/token " << std::endl;
    std::cout << "Throughput: " << metrics.get_throughput().mean  << " tokens/s" << std::endl;
}

output:

mean_generate_duration: 76.28
mean_ttft: 42.58
mean_tpot 3.80

Note: If the input prompt is just a string, the generate function returns only a string without perf_metrics. To obtain perf_metrics, provide the prompt as a list with at least one element or call generate with encoded inputs.

Several perf_metrics can be added to each other. In that case raw_metrics are concatenated and mean/std values are recalculated. This accumulates statistics from several generate() calls

#include "openvino/genai/llm_pipeline.hpp"
#include <iostream>

int main(int argc, char* argv[]) {
    std::string model_path = argv[1];
    ov::genai::LLMPipeline pipe(model_path, "CPU");
    auto result_1 = pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(20));
    auto result_2 = pipe.generate("The Sun is yellow because", ov::genai::max_new_tokens(20));
    auto perf_metrics = result_1.perf_metrics + result_2.perf_metrics
    
    std::cout << std::fixed << std::setprecision(2);
    std::cout << "Generate duration: " << perf_metrics.get_generate_duration().mean << " ms" << std::endl;
    std::cout << "TTFT: " << metrics.get_ttft().mean  << " ms" << std::endl;
    std::cout << "TPOT: " << metrics.get_tpot().mean  << " ms/token " << std::endl;
    std::cout << "Throughput: " << metrics.get_throughput().mean  << " tokens/s" << std::endl;
}
import openvino_genai as ov_genai
pipe = ov_genai.LLMPipeline(model_path, "CPU")
res_1 = pipe.generate(["The Sun is yellow because"], max_new_tokens=20)
res_2 = pipe.generate(["Why Sky is blue because"], max_new_tokens=20)
perf_metrics = res_1.perf_metrics + res_2.perf_metrics

print(f'Generate duration: {perf_metrics.get_generate_duration().mean:.2f}')
print(f'TTFT: {perf_metrics.get_ttft().mean:.2f} ms')
print(f'TPOT: {perf_metrics.get_tpot().mean:.2f} ms/token')
print(f'Throughput: {perf_metrics.get_throughput().mean:.2f} tokens/s')

For more examples of how metrics are used, please refer to the Python benchmark_genai.py and C++ benchmark_genai samples.

How It Works

For information on how OpenVINO™ GenAI works, refer to the How It Works Section.

Supported Models

For a list of supported models, refer to the Supported Models Section.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_genai-2024.3.0.0-cp312-cp312-win_amd64.whl (950.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

openvino_genai-2024.3.0.0-cp312-cp312-manylinux_2_31_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.31+ ARM64

openvino_genai-2024.3.0.0-cp311-cp311-win_amd64.whl (948.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

openvino_genai-2024.3.0.0-cp311-cp311-manylinux_2_31_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.31+ ARM64

openvino_genai-2024.3.0.0-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

openvino_genai-2024.3.0.0-cp311-cp311-macosx_10_15_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

openvino_genai-2024.3.0.0-cp310-cp310-win_amd64.whl (947.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

openvino_genai-2024.3.0.0-cp310-cp310-manylinux_2_31_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ ARM64

openvino_genai-2024.3.0.0-cp310-cp310-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

openvino_genai-2024.3.0.0-cp310-cp310-macosx_10_15_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

openvino_genai-2024.3.0.0-cp39-cp39-win_amd64.whl (942.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

openvino_genai-2024.3.0.0-cp39-cp39-manylinux_2_31_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ ARM64

openvino_genai-2024.3.0.0-cp39-cp39-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

openvino_genai-2024.3.0.0-cp39-cp39-macosx_10_15_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

openvino_genai-2024.3.0.0-cp38-cp38-win_amd64.whl (947.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

openvino_genai-2024.3.0.0-cp38-cp38-manylinux_2_31_aarch64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ ARM64

openvino_genai-2024.3.0.0-cp38-cp38-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

openvino_genai-2024.3.0.0-cp38-cp38-macosx_10_15_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file openvino_genai-2024.3.0.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 0841467bf59fd358613f7e41f0af6a9cffcc88d9e723cc2051d13634530d8e50
MD5 bed636b208f0682414fbefb060bd7b51
BLAKE2b-256 49f6cf64d4128db1f561fdfc62dd5b0ed89bf22ae01b1f8e5bee29e099a14d7a

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp312-cp312-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp312-cp312-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 5a9412157bada066366e597bf94eb895e038ec51b228c44bc5acfb40205bba77
MD5 9cb1f213eb5d92624a413d82d47e58fa
BLAKE2b-256 9bba354f7ae98969463aca9f1230b650703fac17a19a493041b469f74e4d5f2f

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62de50b23b9be3522ae4e04c323c8f639826989eb7d1317526f5b1ef5bba96bd
MD5 5fdff0c5fe2634c1ee2a2e43c15642d2
BLAKE2b-256 1ae1f1e482cd0ae99ef8ff282b5b3280f1b976d983da2560d71240b5a1d2672f

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 665ed2e5a968c26a7cd0d73a92e1dac1b071f41d85399c330a408b91fc49cbbc
MD5 e6903ea0c49b10bafa0f90c0dbc1f0e8
BLAKE2b-256 4e89b20a016628daf7240a4509f479c54bc9a22dfeeb41aef83e11f48fbf0d66

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp311-cp311-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp311-cp311-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 19670eafc99e00345e2abc475a093286c24bbc6d14f5e527bcfc4fdb013179f4
MD5 377551621217cc6c6e43e9b13e76c68a
BLAKE2b-256 805c84d7b86dcb330274febdaa5d40a38b55277a3889da220f5755dd7ad4fbdf

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49e4c5b6cc1f9b64c9d5423c23ccf23fd9ad5b6ada40b9a8d80ff82459a4c658
MD5 01b56f81e848316f91abf798e77c16bd
BLAKE2b-256 4f8517936ee21ea2313fd008b04a08fdcff5c27d3f7cc240f05d62970d28a151

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a433dbde026593ed6907b07f5e6e0f98e6a6169a998a163001eb60c7a7ecf9c0
MD5 1d81198c41333ff8dc82f8892cb96b44
BLAKE2b-256 c1a7f69f4f3402754f12a297db217b6012e97ae1c958c0988675f8461807b1fb

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b6e21eda4566c826b8a13a2d30230ba16da4ad64229586d8b289b01a9d408143
MD5 5b75a03441ecfe12d8dffc51e4a86096
BLAKE2b-256 56aa10185a35f2e3f8cbd1f9b20308e20e238b53628e2781c77661c214d55e60

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 278aca53b6e94fed869507c6dc1284ecc219748b5bad1afdafe2d7cf0f02d493
MD5 667df22504c777855fae397f6186a741
BLAKE2b-256 ced4227290284dfa79eb76100b4b4eef7f7a17e23826800d49922f429bd8a4d4

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp310-cp310-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp310-cp310-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 088b94ef490811f82434a41fe154c9e7e8ffbebe05adea57347909551cf6de61
MD5 098b488e855ac3a2ca2d6a28c2ea0292
BLAKE2b-256 d64ffb8b3cb1049c32da36aee1438b6a90db23b661a7d1cf9989004e12898d40

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a159e3752efd8c46a03f307d512c0a8644f7fcbf73008abdf319c6b4714595a7
MD5 25b6ce715c33b2d4a1f03cfaf3f47c21
BLAKE2b-256 aa7ec14901f4056cb258463583626deedc453cd6ac0f78fd7cc555728efb7137

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e796e6d4a863cc0c37f38e8aa7c5831df6c8f9d6e234044df8478df88548bcf
MD5 1443188c0e71f78356be3cd6be909f5a
BLAKE2b-256 efd9ec0d3f24f754fa35765be92187f12e55b55863349694b77c62ad7fc88deb

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d3a51d2a0771793c01ec7aecca94eed29d27a61635d77efaffe7ab0944a774be
MD5 a991d89001aa70dbdc54f328ff7676c4
BLAKE2b-256 e676d1b5359257dfa33ba93a4b4d47dc0cc0bebf5319e8c72e0f89fa8baf90b6

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6260bb96f32090203a196a7aec419c379bcefaecc895b6dbd27b1e7757046808
MD5 ceebe307574c3e1249758a062f6e89a6
BLAKE2b-256 d34d19956283df04e03d7e1e4cff35efd711624843795e6a0991add6ff7f01a6

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp39-cp39-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp39-cp39-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 a1805765a8143a8636c3c1d23d0c05e9201a233e6e00eed493bb8e725afa25fc
MD5 2fcc839a774d589c838028a828735b83
BLAKE2b-256 330a8c74faf9aceca9445058acbe4aa1b598b73afbf3563b58af26eb8c431bff

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b89454533412ee1cd7fad42ee7e11afacd60137b53c6482771ef60ce587d32aa
MD5 d1ffa45449b526d27d71a731b6794069
BLAKE2b-256 1644f6e595042e650c50921d6f1f50111281450b462e4647a8fa9a09269faf12

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c3daa8afb9c403ce2e37e471224b69edd075cbc9f25f0e6807c95c20a822d624
MD5 488e7126d14519af892659678d448cec
BLAKE2b-256 32f73a4f2880f59d3b87c29088d10aff94aa50cd812bc76439bd082618d7f32d

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 06109bc04d38bd9f27819ab2720108e1d844f48b180b39fe8a5a729f80008389
MD5 7cbc70829a1fa8262fd1433bba865731
BLAKE2b-256 e55fef17dea9b0837a3c61431290ccee5915b87598249e9bc2d4b25a1f25e89b

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8a5961086e4e2a93fccb5dae8f6e2bca3a822e487d008d18bf5daa5ea711a236
MD5 1211b3b0b4718343985d06f48cfea635
BLAKE2b-256 11661a3d521a19c624b601e1786775d46a76e8ed7b445b5d0a3816837c09e130

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp38-cp38-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp38-cp38-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 e8ff3f85e2f3131603e06a5920d0725b3b67ac20530ae0e0dfd89b1f6855c839
MD5 d8bd4941f3f128924583df51a5ec2daf
BLAKE2b-256 dbc4497d63d67c78d317c27384a53fdab5d620dedc503797be0e142e3f743edb

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55885def04298b8c329d50338c93d7c1453ef2d8cec4a95d1699359d01a9dcdf
MD5 24bf5e09b9a9b011c66c17ba32e529f6
BLAKE2b-256 52d440447482151d7d03887eacad6411a2e70516534543713611a82f85e530fa

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1ca2319116720648cf1e3ddd463cdd0f298040872309cd62ecb5398a244a67e
MD5 7a338e7c12d52f772328d2e80c5d858f
BLAKE2b-256 c4d13c3585064c6c36dff8adbb1ff21583a52c224470a00506d95474f14211cf

See more details on using hashes here.

File details

Details for the file openvino_genai-2024.3.0.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_genai-2024.3.0.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 eb90c8b98b4ac51cfae35bb5303d93609f80ef436f18881c7ff86a92ade7c0c0
MD5 da2c4e8bd0fa2772192bf162c1214dad
BLAKE2b-256 ceb2283f4b07fb3407291e0fad8b08d948eb49896041309ee7b80bbca9729a25

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page