Skip to main content

Convert tokenizers into OpenVINO models

Project description

OpenVINO Tokenizers

Downloads

OpenVINO Tokenizers adds text processing operations to OpenVINO.

Features

  • Perform tokenization and detokenization without third-party dependencies
  • Convert a HuggingFace tokenizer into OpenVINO model tokenizer and detokenizer
  • Combine OpenVINO models into a single model
  • Add greedy decoding pipeline to text generation model

Installation

(Recommended) Create and activate virtual env:

python3 -m venv venv
source venv/bin/activate
 # or
conda create --name openvino_tokenizers
conda activate openvino_tokenizers

Minimal Installation

Use minimal installation when you have a converted OpenVINO tokenizer:

pip install openvino-tokenizers
 # or
conda install -c conda-forge openvino openvino-tokenizers

Convert Tokenizers Installation

If you want to convert HuggingFace tokenizers into OpenVINO tokenizers:

pip install openvino-tokenizers[transformers]
 # or
conda install -c conda-forge openvino openvino-tokenizers && pip install transformers[sentencepiece] tiktoken

Install Pre-release Version

Use openvino-tokenizers[transformers] to install tokenizers conversion dependencies.

pip install --pre -U openvino openvino-tokenizers --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly

Build and Install from Source

Install OpenVINO archive distribution. Use --no-deps to avoid OpenVINO installation from PyPI.

source path/to/installed/openvino/setupvars.sh
git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install --no-deps .

This command is the equivalent of minimal installation. Install tokenizers conversion dependencies if needed:

pip install transformers[sentencepiece] tiktoken

:warning: Latest commit of OpenVINO Tokenizers might rely on features that are not present in the release OpenVINO version. Use a nightly build of OpenVINO or build OpenVINO Tokenizers from a release branch if you have issues with the build process.

Build and install for development

source path/to/installed/openvino/setupvars.sh
git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install -e .[all]
# verify installation by running tests
cd tests/
pytest .

C++ Installation

You can use converted tokenizers in C++ pipelines with prebuild binaries.

  1. Download OpenVINO archive distribution for your OS from here and extract the archive.
  2. Download OpenVINO Tokenizers prebuild libraries from here. To ensure compatibility first three numbers of OpenVINO Tokenizers version should match OpenVINO version and OS.
  3. Extract OpenVINO Tokenizers archive into OpenVINO installation directory:
    • Windows: <openvino_dir>\runtime\bin\intel64\Release\
    • MacOS_x86: <openvino_dir>/runtime/lib/intel64/Release
    • MacOS_arm64: <openvino_dir>/runtime/lib/arm64/Release/
    • Linux_x86: <openvino_dir>/runtime/lib/intel64/
    • Linux_arm64: <openvino_dir>/runtime/lib/aarch64/

After that you can add binary extension in the code with:

  • core.add_extension("openvino_tokenizers.dll") for Windows
  • core.add_extension("libopenvino_tokenizers.dylib") for MacOS
  • core.add_extension("libopenvino_tokenizers.so") for Linux

and read/compile converted (de)tokenizers models. If you use version 2023.3.0.0, the binary extension file is called (lib)user_ov_extension.(dll/dylib/so).

Usage

:warning: OpenVINO Tokenizers can be inferred on a CPU device only.

Convert HuggingFace tokenizer

OpenVINO Tokenizers ships with CLI tool that can convert tokenizers from Huggingface Hub or Huggingface tokenizers saved on disk:

convert_tokenizer codellama/CodeLlama-7b-hf --with-detokenizer -o output_dir

There is also convert_tokenizer function that can convert tokenizer python object.

import numpy as np
from transformers import AutoTokenizer
from openvino import compile_model, save_model
from openvino_tokenizers import convert_tokenizer

hf_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
ov_tokenizer = convert_tokenizer(hf_tokenizer)

compiled_tokenzier = compile_model(ov_tokenizer)
text_input = ["Test string"]

hf_output = hf_tokenizer(text_input, return_tensors="np")
ov_output = compiled_tokenzier(text_input)

for output_name in hf_output:
    print(f"OpenVINO {output_name} = {ov_output[output_name]}")
    print(f"HuggingFace {output_name} = {hf_output[output_name]}")
# OpenVINO input_ids = [[ 101 3231 5164  102]]
# HuggingFace input_ids = [[ 101 3231 5164  102]]
# OpenVINO token_type_ids = [[0 0 0 0]]
# HuggingFace token_type_ids = [[0 0 0 0]]
# OpenVINO attention_mask = [[1 1 1 1]]
# HuggingFace attention_mask = [[1 1 1 1]]

# save tokenizer for later use
save_model(ov_tokenizer, "openvino_tokenizer.xml")

loaded_tokenizer = compile_model("openvino_tokenizer.xml")
loaded_ov_output = loaded_tokenizer(text_input)
for output_name in hf_output:
    assert np.all(loaded_ov_output[output_name] == ov_output[output_name])

Connect Tokenizer to a Model

To infer and convert the original model, install torch or torch-cpu to the virtual environment.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from openvino import compile_model, convert_model
from openvino_tokenizers import convert_tokenizer, connect_models

checkpoint = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
hf_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
hf_model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

text_input = ["Free money!!!"]
hf_input = hf_tokenizer(text_input, return_tensors="pt")
hf_output = hf_model(**hf_input)

ov_tokenizer = convert_tokenizer(hf_tokenizer)
ov_model = convert_model(hf_model, example_input=hf_input.data)
combined_model = connect_models(ov_tokenizer, ov_model)
compiled_combined_model = compile_model(combined_model)

openvino_output = compiled_combined_model(text_input)

print(f"OpenVINO logits: {openvino_output['logits']}")
# OpenVINO logits: [[ 1.2007061 -1.4698029]]
print(f"HuggingFace logits {hf_output.logits}")
# HuggingFace logits tensor([[ 1.2007, -1.4698]], grad_fn=<AddmmBackward0>)

Use Extension With Converted (De)Tokenizer or Model With (De)Tokenizer

Import openvino_tokenizers will add all tokenizer-related operations to OpenVINO, after which you can work with saved tokenizers and detokenizers.

import numpy as np
import openvino_tokenizers
from openvino import Core

core = Core()

# detokenizer from codellama sentencepiece model
compiled_detokenizer = core.compile_model("detokenizer.xml")

token_ids = np.random.randint(100, 1000, size=(3, 5))
openvino_output = compiled_detokenizer(token_ids)

print(openvino_output["string_output"])
# ['sc�ouition�', 'intvenord hasient', 'g shouldwer M more']

Text generation pipeline

import numpy as np
from openvino import compile_model, convert_model
from openvino_tokenizers import add_greedy_decoding, convert_tokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer


model_checkpoint = "JackFram/llama-68m"
hf_tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
hf_model = AutoModelForCausalLM.from_pretrained(model_checkpoint, use_cache=False)

# convert hf tokenizer
text_input = ["Quick brown fox jumped "]
ov_tokenizer, ov_detokenizer = convert_tokenizer(hf_tokenizer, with_detokenizer=True, skip_special_tokens=True)
compiled_tokenizer = compile_model(ov_tokenizer)

# transform input text into tokens
ov_input = compiled_tokenizer(text_input)
hf_input = hf_tokenizer(text_input, return_tensors="pt")

# convert Pytorch model to OpenVINO IR and add greedy decoding pipeline to it
ov_model = convert_model(hf_model, example_input=hf_input.data)
ov_model_with_greedy_decoding = add_greedy_decoding(ov_model)
compiled_model = compile_model(ov_model_with_greedy_decoding)

# generate new tokens
new_tokens_size = 10
prompt_size = ov_input["input_ids"].shape[-1]
input_dict = {
    output.any_name: np.hstack([tensor, np.zeros(shape=(1, new_tokens_size), dtype=np.int_)])
    for output, tensor in ov_input.items()
}
for idx in range(prompt_size, prompt_size + new_tokens_size):
    output = compiled_model(input_dict)["token_ids"]
    input_dict["input_ids"][:, idx] = output[:, idx - 1]
    input_dict["attention_mask"][:, idx] = 1
ov_token_ids = input_dict["input_ids"]

hf_token_ids = hf_model.generate(
    **hf_input,
    min_new_tokens=new_tokens_size,
    max_new_tokens=new_tokens_size,
    temperature=0,  # greedy decoding
)

# decode model output
compiled_detokenizer = compile_model(ov_detokenizer)
ov_output = compiled_detokenizer(ov_token_ids)["string_output"]
hf_output = hf_tokenizer.batch_decode(hf_token_ids, skip_special_tokens=True)
print(f"OpenVINO output string: `{ov_output}`")
# OpenVINO output string: `['<s> Quick brown fox was walking through the forest. He was looking for something']`
print(f"HuggingFace output string: `{hf_output}`")
# HuggingFace output string: `['Quick brown fox was walking through the forest. He was looking for something']`

TensorFlow Text Integration

OpenVINO Tokenizers include converters for certain TensorFlow Text operations. Currently, only the MUSE model is supported. Here is an example of model conversion and inference:

import numpy as np
import tensorflow_hub as hub
import tensorflow_text  # register tf text ops
from openvino import convert_model, compile_model
import openvino_tokenizers  # register ov tokenizer ops and translators


sentences = ["dog",  "I cuccioli sono carini.", "私は犬と一緒にビーチを散歩するのが好きです"]
tf_embed = hub.load(
    "https://www.kaggle.com/models/google/universal-sentence-encoder/frameworks/"
    "TensorFlow2/variations/multilingual/versions/2"
)
# convert model that uses Sentencepiece tokenizer op from TF Text
ov_model = convert_model(tf_embed)
ov_embed = compile_model(ov_model, "CPU")

ov_result = ov_embed(sentences)[ov_embed.output()]
tf_result = tf_embed(sentences)

assert np.all(np.isclose(ov_result, tf_result, atol=1e-4))

RWKV Tokenizer

from urllib.request import urlopen

from openvino import compile_model
from openvino_tokenizers import build_rwkv_tokenizer


rwkv_vocab_url = (
    "https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/tokenizer/rwkv_vocab_v20230424.txt"
)

with urlopen(rwkv_vocab_url) as vocab_file:
    vocab = map(bytes.decode, vocab_file)
    tokenizer, detokenizer = build_rwkv_tokenizer(vocab)

tokenizer, detokenizer = compile_model(tokenizer), compile_model(detokenizer)

print(tokenized := tokenizer(["Test string"])["input_ids"])  # [[24235 47429]]
print(detokenizer(tokenized)["string_output"])  # ['Test string']

Supported Tokenizer Types

Huggingface
Tokenizer Type
Tokenizer Model Type Tokenizer Detokenizer
Fast WordPiece
BPE
Unigram
Legacy SentencePiece .model
Custom tiktoken
RWKV Trie

Test Results

This report is autogenerated and includes tokenizers and detokenizers tests. The Output Matched, % column shows the percent of test strings for which the results of OpenVINO and Hugingface Tokenizers are the same. To update the report run pytest --update_readme tokenizers_test.py in tests directory.

Output Match by Tokenizer Type

Tokenizer Type Output Matched, % Number of Tests
BPE 96.82 3620
SentencePiece 76.33 3620
Tiktoken 97.71 218
WordPiece 90.43 533

Output Match by Model

Tokenizer Type Model Output Matched, % Number of Tests
BPE EleutherAI/gpt-j-6b 98.90 181
BPE EleutherAI/gpt-neo-125m 98.90 181
BPE EleutherAI/gpt-neox-20b 97.79 181
BPE EleutherAI/pythia-12b-deduped 97.79 181
BPE KoboldAI/fairseq-dense-13B 98.90 181
BPE Salesforce/codegen-16B-multi 97.79 181
BPE ai-forever/rugpt3large_based_on_gpt2 97.79 181
BPE bigscience/bloom 99.45 181
BPE databricks/dolly-v2-3b 97.79 181
BPE facebook/bart-large-mnli 98.90 181
BPE facebook/galactica-120b 98.34 181
BPE facebook/opt-66b 98.90 181
BPE gpt2 98.90 181
BPE laion/CLIP-ViT-bigG-14-laion2B-39B-b160k 65.19 181
BPE microsoft/deberta-base 98.90 181
BPE roberta-base 98.90 181
BPE sentence-transformers/all-roberta-large-v1 98.90 181
BPE stabilityai/stablecode-completion-alpha-3b-4k 98.34 181
BPE stabilityai/stablelm-2-1_6b 98.34 181
BPE stabilityai/stablelm-tuned-alpha-7b 97.79 181
SentencePiece NousResearch/Llama-2-13b-hf 100.00 181
SentencePiece NousResearch/Llama-2-13b-hf_slow 100.00 181
SentencePiece THUDM/chatglm2-6b 100.00 181
SentencePiece THUDM/chatglm2-6b_slow 100.00 181
SentencePiece THUDM/chatglm3-6b 19.34 181
SentencePiece THUDM/chatglm3-6b_slow 19.34 181
SentencePiece camembert-base 0.55 181
SentencePiece camembert-base_slow 74.03 181
SentencePiece codellama/CodeLlama-7b-hf 100.00 181
SentencePiece codellama/CodeLlama-7b-hf_slow 100.00 181
SentencePiece facebook/musicgen-small 80.11 181
SentencePiece facebook/musicgen-small_slow 74.03 181
SentencePiece microsoft/deberta-v3-base 93.37 181
SentencePiece microsoft/deberta-v3-base_slow 100.00 181
SentencePiece t5-base 81.22 181
SentencePiece t5-base_slow 75.14 181
SentencePiece xlm-roberta-base 97.24 181
SentencePiece xlm-roberta-base_slow 97.24 181
SentencePiece xlnet-base-cased 61.33 181
SentencePiece xlnet-base-cased_slow 53.59 181
Tiktoken Qwen/Qwen-14B-Chat 98.17 109
Tiktoken Salesforce/xgen-7b-8k-base 97.25 109
WordPiece ProsusAI/finbert 95.12 41
WordPiece bert-base-multilingual-cased 95.12 41
WordPiece bert-base-uncased 95.12 41
WordPiece cointegrated/rubert-tiny2 80.49 41
WordPiece distilbert-base-uncased-finetuned-sst-2-english 95.12 41
WordPiece google/electra-base-discriminator 95.12 41
WordPiece google/mobilebert-uncased 95.12 41
WordPiece jhgan/ko-sbert-sts 75.61 41
WordPiece prajjwal1/bert-mini 95.12 41
WordPiece rajiv003/ernie-finetuned-qqp 95.12 41
WordPiece rasa/LaBSE 87.80 41
WordPiece sentence-transformers/all-MiniLM-L6-v2 75.61 41
WordPiece squeezebert/squeezebert-uncased 95.12 41

Recreating Tokenizers From Tests

In some tokenizers, you need to select certain settings so that their output is closer to the Huggingface tokenizers:

  • THUDM/chatglm2-6b detokenizer always skips special tokens. Use skip_special_tokens=True during conversion
  • THUDM/chatglm3-6b detokenizer don't skips special tokens. Use skip_special_tokens=False during conversion
  • All tested tiktoken based detokenizers leave extra spaces. Use clean_up_tokenization_spaces=False during conversion

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_tokenizers-2024.1.0.0-81-py3-none-win_amd64.whl (14.0 MB view details)

Uploaded Python 3 Windows x86-64

openvino_tokenizers-2024.1.0.0-81-py3-none-manylinux_2_27_aarch64.whl (13.8 MB view details)

Uploaded Python 3 manylinux: glibc 2.27+ ARM64

openvino_tokenizers-2024.1.0.0-81-py3-none-manylinux_2_17_x86_64.whl (13.8 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ x86-64

openvino_tokenizers-2024.1.0.0-81-py3-none-macosx_11_0_arm64.whl (13.6 MB view details)

Uploaded Python 3 macOS 11.0+ ARM64

openvino_tokenizers-2024.1.0.0-81-py3-none-macosx_10_12_x86_64.whl (13.8 MB view details)

Uploaded Python 3 macOS 10.12+ x86-64

File details

Details for the file openvino_tokenizers-2024.1.0.0-81-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.1.0.0-81-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 dd38cc594cfc45cb1998a967ca2e658e11e4355b91927baf64be7d89d4a52c25
MD5 b98d087a7bd1233f3029ea0f9bc54c10
BLAKE2b-256 a8b63b8f8a08ed83c9b741d2cde74c1a16d394a260859ed66b7b97ff11b003f9

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.1.0.0-81-py3-none-manylinux_2_27_aarch64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.1.0.0-81-py3-none-manylinux_2_27_aarch64.whl
Algorithm Hash digest
SHA256 d0797e8b7076c75ef92a24fb13ac83c9eba17abbb1651ee7f7875c32cb963815
MD5 b6f23bb8483f52fc6232e0c004547aa6
BLAKE2b-256 7ef032ff8b1555f088bd21ba661f02c3fddf90d447ba88ba67e20247fe1f372d

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.1.0.0-81-py3-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.1.0.0-81-py3-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 241a83150dd37b23eec7845ca829ea9f1ccd67e6df7cc0bd3ea0c9afeb5dbe35
MD5 1041fe86ac47ec3fe7081d5dc9d825be
BLAKE2b-256 e74b51e771a410c17031c299f4e012a4107cd11d0b16d1b84a5ecb3653598751

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.1.0.0-81-py3-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.1.0.0-81-py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 28e9a13e9939491450819cff6b921534043433ade8e6a7ba14eff0ba9c371ce9
MD5 e8bf8ae489c683bacfd654a0395ae6a4
BLAKE2b-256 59f3886ceb05994364b910e136cf6655641cd68e38e65e6e8fb49dfb70b95652

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.1.0.0-81-py3-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.1.0.0-81-py3-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 554c01d9d2ee633d7c6840f0bf1125dad8ff5396a59a164f42fe067ad1fc5e8d
MD5 96dda2c0e371cc5380687ec814cf414f
BLAKE2b-256 1fd64aaab2ee672a7e9c92c9b078cc6c419c9659e48765cbf9f4b93a7a8f5373

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page