Skip to main content

Convert tokenizers into OpenVINO models

Project description

OpenVINO Tokenizers

Downloads Anaconda-Server Badge

OpenVINO Tokenizers adds text processing operations to OpenVINO.

Features

  • Perform tokenization and detokenization without third-party dependencies
  • Convert a HuggingFace tokenizer into OpenVINO model tokenizer and detokenizer
  • Combine OpenVINO models into a single model
  • Add greedy decoding pipeline to text generation model

Installation

(Recommended) Create and activate virtual env:

python3 -m venv venv
source venv/bin/activate
 # or
conda create --name openvino_tokenizers
conda activate openvino_tokenizers

Minimal Installation

Use minimal installation when you have a converted OpenVINO tokenizer:

pip install openvino-tokenizers
 # or
conda install -c conda-forge openvino openvino-tokenizers

Convert Tokenizers Installation

If you want to convert HuggingFace tokenizers into OpenVINO tokenizers:

pip install openvino-tokenizers[transformers]
 # or
conda install -c conda-forge openvino openvino-tokenizers && pip install transformers[sentencepiece] tiktoken

Install Pre-release Version

Use openvino-tokenizers[transformers] to install tokenizers conversion dependencies.

pip install --pre -U openvino openvino-tokenizers --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly

Build and Install from Source

Using OpenVINO PyPI package

openvino-tokenizers build depends on openvino package which will be automatically installed from PyPI during the build process. To install unreleased versions, you would need to install openvino package from the nightly distribution channel using --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly

git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install . --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly

This command is the equivalent of minimal installation. Install tokenizers conversion dependencies if needed:

pip install transformers[sentencepiece] tiktoken

:warning: Latest commit of OpenVINO Tokenizers might rely on features that are not present in the release OpenVINO version. Use a nightly build of OpenVINO or build OpenVINO Tokenizers from a release branch if you have issues with the build process.

Using OpenVINO archive

Install OpenVINO archive distribution. Use --no-deps to avoid OpenVINO installation from PyPI into your current environment. --extra-index-url is needed to resolve build dependencies only.

source path/to/installed/openvino/setupvars.sh
git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install --no-deps . --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly

This command is the equivalent of minimal installation. Install tokenizers conversion dependencies if needed:

pip install transformers[sentencepiece] tiktoken

:warning: Latest commit of OpenVINO Tokenizers might rely on features that are not present in the release OpenVINO version. Use a nightly build of OpenVINO or build OpenVINO Tokenizers from a release branch if you have issues with the build process.

Build and install for development

Using OpenVINO PyPI package

git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install -e .[all] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
# verify installation by running tests
cd tests/
pytest .

Using OpenVINO archive

Install OpenVINO archive distribution. Use --no-deps to avoid OpenVINO installation from PyPI into your current environment. --extra-index-url is needed to resolve build dependencies only.

source path/to/installed/openvino/setupvars.sh
git clone https://github.com/openvinotoolkit/openvino_tokenizers.git
cd openvino_tokenizers
pip install -e .[all] --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly
# verify installation by running tests
cd tests/
pytest .

C++ Installation

You can use converted tokenizers in C++ pipelines with prebuild binaries.

  1. Download OpenVINO archive distribution for your OS from here and extract the archive.
  2. Download OpenVINO Tokenizers prebuild libraries from here. To ensure compatibility first three numbers of OpenVINO Tokenizers version should match OpenVINO version and OS.
  3. Extract OpenVINO Tokenizers archive into OpenVINO installation directory. OpenVINO Tokenizers archive maintains the structure to be aligned with OpenVINO archive:
    • Windows: <openvino_dir>\runtime\bin\intel64\Release\
    • MacOS_x86: <openvino_dir>/runtime/lib/intel64/Release
    • MacOS_arm64: <openvino_dir>/runtime/lib/arm64/Release/
    • Linux_x86: <openvino_dir>/runtime/lib/intel64/
    • Linux_arm64: <openvino_dir>/runtime/lib/aarch64/

After that you can add binary extension in the code with:

  • core.add_extension("openvino_tokenizers.dll") for Windows
  • core.add_extension("libopenvino_tokenizers.dylib") for MacOS
  • core.add_extension("libopenvino_tokenizers.so") for Linux

and read/compile converted (de)tokenizers models. If you use version 2023.3.0.0, the binary extension file is called (lib)user_ov_extension.(dll/dylib/so).

Reducing the ICU Data Size

By default, all available ICU locales are supported, which significantly increases the package size. To reduce the size of the ICU libraries included in your final package, follow these steps:

  1. Use the ICU Data Configuration File:

    • This file specifies which features and locales to include in a custom data bundle. You can find more information here.
  2. Set the ICU Data Filter File as an Environment Variable:

    • On Unix-like systems (Linux, macOS): Set the ICU_DATA_FILTER_FILE environment variable to the path of your configuration file (filters.json):

      export ICU_DATA_FILTER_FILE="filters.json"
      
    • On Windows: Set the ICU_DATA_FILTER_FILE environment variable using the Command Prompt or PowerShell:

      Command Prompt:

      set ICU_DATA_FILTER_FILE=filters.json
      

      PowerShell:

      $env:ICU_DATA_FILTER_FILE="filters.json"
      
  3. Create a Configuration File:

    • An example configuration file (filters.json) might look like this:
    {
      "localeFilter": {
        "filterType": "language",
        "includelist": [
          "en"
        ]
      }
    }
    
  4. Configure OpenVINO Tokenizers:

    • When building OpenVINO tokenizers, set the following CMake option during the project configuration:
    -DBUILD_FAST_TOKENIZERS=ON
    
    • Example for a pip installation path:
    ICU_DATA_FILTER_FILE=</path/to/filters.json> pip install git+https://github.com/openvinotoolkit/openvino_tokenizers.git --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/nightly --config-settings=override=cmake.options.BUILD_FAST_TOKENIZERS=ON
    

By following these instructions, you can effectively reduce the size of the ICU libraries in your final package.

Usage

:warning: OpenVINO Tokenizers can be inferred on a CPU device only.

Convert HuggingFace tokenizer

OpenVINO Tokenizers ships with CLI tool that can convert tokenizers from Huggingface Hub or Huggingface tokenizers saved on disk:

convert_tokenizer codellama/CodeLlama-7b-hf --with-detokenizer -o output_dir

There is also convert_tokenizer function that can convert tokenizer python object.

import numpy as np
from transformers import AutoTokenizer
from openvino import compile_model, save_model
from openvino_tokenizers import convert_tokenizer

hf_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
ov_tokenizer = convert_tokenizer(hf_tokenizer)

compiled_tokenzier = compile_model(ov_tokenizer)
text_input = ["Test string"]

hf_output = hf_tokenizer(text_input, return_tensors="np")
ov_output = compiled_tokenzier(text_input)

for output_name in hf_output:
    print(f"OpenVINO {output_name} = {ov_output[output_name]}")
    print(f"HuggingFace {output_name} = {hf_output[output_name]}")
# OpenVINO input_ids = [[ 101 3231 5164  102]]
# HuggingFace input_ids = [[ 101 3231 5164  102]]
# OpenVINO token_type_ids = [[0 0 0 0]]
# HuggingFace token_type_ids = [[0 0 0 0]]
# OpenVINO attention_mask = [[1 1 1 1]]
# HuggingFace attention_mask = [[1 1 1 1]]

# save tokenizer for later use
save_model(ov_tokenizer, "openvino_tokenizer.xml")

loaded_tokenizer = compile_model("openvino_tokenizer.xml")
loaded_ov_output = loaded_tokenizer(text_input)
for output_name in hf_output:
    assert np.all(loaded_ov_output[output_name] == ov_output[output_name])

Connect Tokenizer to a Model

To infer and convert the original model, install torch or torch-cpu to the virtual environment.

from transformers import AutoTokenizer, AutoModelForSequenceClassification
from openvino import compile_model, convert_model
from openvino_tokenizers import convert_tokenizer, connect_models

checkpoint = "mrm8488/bert-tiny-finetuned-sms-spam-detection"
hf_tokenizer = AutoTokenizer.from_pretrained(checkpoint)
hf_model = AutoModelForSequenceClassification.from_pretrained(checkpoint)

text_input = ["Free money!!!"]
hf_input = hf_tokenizer(text_input, return_tensors="pt")
hf_output = hf_model(**hf_input)

ov_tokenizer = convert_tokenizer(hf_tokenizer)
ov_model = convert_model(hf_model, example_input=hf_input.data)
combined_model = connect_models(ov_tokenizer, ov_model)
compiled_combined_model = compile_model(combined_model)

openvino_output = compiled_combined_model(text_input)

print(f"OpenVINO logits: {openvino_output['logits']}")
# OpenVINO logits: [[ 1.2007061 -1.4698029]]
print(f"HuggingFace logits {hf_output.logits}")
# HuggingFace logits tensor([[ 1.2007, -1.4698]], grad_fn=<AddmmBackward0>)

Use Extension With Converted (De)Tokenizer or Model With (De)Tokenizer

Import openvino_tokenizers will add all tokenizer-related operations to OpenVINO, after which you can work with saved tokenizers and detokenizers.

import numpy as np
import openvino_tokenizers
from openvino import Core

core = Core()

# detokenizer from codellama sentencepiece model
compiled_detokenizer = core.compile_model("detokenizer.xml")

token_ids = np.random.randint(100, 1000, size=(3, 5))
openvino_output = compiled_detokenizer(token_ids)

print(openvino_output["string_output"])
# ['sc�ouition�', 'intvenord hasient', 'g shouldwer M more']

Text generation pipeline

import numpy as np
from openvino import compile_model, convert_model
from openvino_tokenizers import add_greedy_decoding, convert_tokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer


model_checkpoint = "JackFram/llama-68m"
hf_tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
hf_model = AutoModelForCausalLM.from_pretrained(model_checkpoint, use_cache=False)

# convert hf tokenizer
text_input = ["Quick brown fox jumped "]
ov_tokenizer, ov_detokenizer = convert_tokenizer(hf_tokenizer, with_detokenizer=True)
compiled_tokenizer = compile_model(ov_tokenizer)

# transform input text into tokens
ov_input = compiled_tokenizer(text_input)
hf_input = hf_tokenizer(text_input, return_tensors="pt")

# convert Pytorch model to OpenVINO IR and add greedy decoding pipeline to it
ov_model = convert_model(hf_model, example_input=hf_input.data)
ov_model_with_greedy_decoding = add_greedy_decoding(ov_model)
compiled_model = compile_model(ov_model_with_greedy_decoding)

# generate new tokens
new_tokens_size = 10
prompt_size = ov_input["input_ids"].shape[-1]
input_dict = {
    output.any_name: np.hstack([tensor, np.zeros(shape=(1, new_tokens_size), dtype=np.int_)])
    for output, tensor in ov_input.items()
}
for idx in range(prompt_size, prompt_size + new_tokens_size):
    output = compiled_model(input_dict)["token_ids"]
    input_dict["input_ids"][:, idx] = output[:, idx - 1]
    input_dict["attention_mask"][:, idx] = 1
ov_token_ids = input_dict["input_ids"]

hf_token_ids = hf_model.generate(
    **hf_input,
    min_new_tokens=new_tokens_size,
    max_new_tokens=new_tokens_size,
    temperature=0,  # greedy decoding
)

# decode model output
compiled_detokenizer = compile_model(ov_detokenizer)
ov_output = compiled_detokenizer(ov_token_ids)["string_output"]
hf_output = hf_tokenizer.batch_decode(hf_token_ids, skip_special_tokens=True)
print(f"OpenVINO output string: `{ov_output}`")
# OpenVINO output string: `['Quick brown fox was walking through the forest. He was looking for something']`
print(f"HuggingFace output string: `{hf_output}`")
# HuggingFace output string: `['Quick brown fox was walking through the forest. He was looking for something']`

TensorFlow Text Integration

OpenVINO Tokenizers include converters for certain TensorFlow Text operations. Currently, only the MUSE model is supported. Here is an example of model conversion and inference:

import numpy as np
import tensorflow_hub as hub
import tensorflow_text  # register tf text ops
from openvino import convert_model, compile_model
import openvino_tokenizers  # register ov tokenizer ops and translators


sentences = ["dog",  "I cuccioli sono carini.", "私は犬と一緒にビーチを散歩するのが好きです"]
tf_embed = hub.load(
    "https://www.kaggle.com/models/google/universal-sentence-encoder/frameworks/"
    "TensorFlow2/variations/multilingual/versions/2"
)
# convert model that uses Sentencepiece tokenizer op from TF Text
ov_model = convert_model(tf_embed)
ov_embed = compile_model(ov_model, "CPU")

ov_result = ov_embed(sentences)[ov_embed.output()]
tf_result = tf_embed(sentences)

assert np.all(np.isclose(ov_result, tf_result, atol=1e-4))

RWKV Tokenizer

from urllib.request import urlopen

from openvino import compile_model
from openvino_tokenizers import build_rwkv_tokenizer


rwkv_vocab_url = (
    "https://raw.githubusercontent.com/BlinkDL/ChatRWKV/main/tokenizer/rwkv_vocab_v20230424.txt"
)

with urlopen(rwkv_vocab_url) as vocab_file:
    vocab = map(bytes.decode, vocab_file)
    tokenizer, detokenizer = build_rwkv_tokenizer(vocab)

tokenizer, detokenizer = compile_model(tokenizer), compile_model(detokenizer)

print(tokenized := tokenizer(["Test string"])["input_ids"])  # [[24235 47429]]
print(detokenizer(tokenized)["string_output"])  # ['Test string']

Supported Tokenizer Types

Huggingface
Tokenizer Type
Tokenizer Model Type Tokenizer Detokenizer
Fast WordPiece
BPE
Unigram
Legacy SentencePiece .model
Custom tiktoken
RWKV Trie

Test Results

This report is autogenerated and includes tokenizers and detokenizers tests. The Output Matched, % column shows the percent of test strings for which the results of OpenVINO and Huggingface Tokenizers are the same. To update the report run pytest --update_readme tokenizers_test.py in tests directory.

Output Match by Tokenizer Type

Tokenizer Type Output Matched, % Number of Tests
BPE 94.99 5928
SentencePiece 80.49 4762
Tiktoken 87.26 416
WordPiece 99.10 1327

Output Match by Model

Tokenizer Type Model Output Matched, % Number of Tests
BPE EleutherAI/gpt-j-6b 95.29 255
BPE EleutherAI/gpt-neo-125m 95.29 255
BPE EleutherAI/gpt-neox-20b 95.82 239
BPE EleutherAI/pythia-12b-deduped 95.82 239
BPE KoboldAI/fairseq-dense-13B 96.65 239
BPE NousResearch/Meta-Llama-3-8B-Instruct 95.82 239
BPE Salesforce/codegen-16B-multi 96.08 255
BPE Xenova/gpt-4o 94.51 255
BPE ai-forever/rugpt3large_based_on_gpt2 94.51 255
BPE bigscience/bloom 97.49 239
BPE databricks/dolly-v2-3b 95.82 239
BPE deepseek-ai/deepseek-coder-6.7b-instruct 100.00 255
BPE facebook/bart-large-mnli 95.29 255
BPE facebook/galactica-120b 95.82 239
BPE facebook/opt-66b 96.65 239
BPE gpt2 95.29 255
BPE laion/CLIP-ViT-bigG-14-laion2B-39B-b160k 75.29 255
BPE microsoft/deberta-base 96.65 239
BPE roberta-base 95.29 255
BPE sentence-transformers/all-roberta-large-v1 95.29 255
BPE stabilityai/stablecode-completion-alpha-3b-4k 95.82 239
BPE stabilityai/stablelm-2-1_6b 95.82 239
BPE stabilityai/stablelm-tuned-alpha-7b 95.82 239
BPE tiiuae/falcon-7b 94.51 255
SentencePiece NousResearch/Llama-2-13b-hf 97.49 239
SentencePiece NousResearch/Llama-2-13b-hf_slow 100.00 223
SentencePiece THUDM/chatglm2-6b 100.00 153
SentencePiece THUDM/chatglm2-6b_slow 100.00 149
SentencePiece THUDM/chatglm3-6b 48.37 153
SentencePiece THUDM/chatglm3-6b_slow 47.65 149
SentencePiece camembert-base 4.18 239
SentencePiece camembert-base_slow 78.03 223
SentencePiece codellama/CodeLlama-7b-hf 100.00 239
SentencePiece codellama/CodeLlama-7b-hf_slow 100.00 223
SentencePiece facebook/musicgen-small 82.43 239
SentencePiece facebook/musicgen-small_slow 78.03 223
SentencePiece microsoft/deberta-v3-base 89.96 239
SentencePiece microsoft/deberta-v3-base_slow 100.00 223
SentencePiece rinna/bilingual-gpt-neox-4b 68.20 239
SentencePiece rinna/bilingual-gpt-neox-4b_slow 89.24 223
SentencePiece t5-base 85.77 239
SentencePiece t5-base_slow 79.82 223
SentencePiece xlm-roberta-base 93.31 239
SentencePiece xlm-roberta-base_slow 96.41 223
SentencePiece xlnet-base-cased 65.27 239
SentencePiece xlnet-base-cased_slow 60.99 223
Tiktoken Qwen/Qwen-14B-Chat 93.06 144
Tiktoken Salesforce/xgen-7b-8k-base 95.31 128
Tiktoken THUDM/glm-4-9b 74.31 144
WordPiece ProsusAI/finbert 100.00 107
WordPiece bert-base-multilingual-cased 100.00 107
WordPiece bert-base-uncased 100.00 107
WordPiece cointegrated/rubert-tiny2 100.00 107
WordPiece distilbert-base-uncased-finetuned-sst-2-english 100.00 107
WordPiece google/electra-base-discriminator 100.00 107
WordPiece google/mobilebert-uncased 100.00 91
WordPiece jhgan/ko-sbert-sts 100.00 107
WordPiece prajjwal1/bert-mini 100.00 91
WordPiece rajiv003/ernie-finetuned-qqp 100.00 91
WordPiece rasa/LaBSE 88.79 107
WordPiece sentence-transformers/all-MiniLM-L6-v2 100.00 107
WordPiece squeezebert/squeezebert-uncased 100.00 91

Recreating Tokenizers From Tests

In some tokenizers, you need to select certain settings so that their output is closer to the Huggingface tokenizers:

  • THUDM/chatglm2-6b detokenizer always skips special tokens. Use skip_special_tokens=True during conversion
  • THUDM/chatglm3-6b detokenizer don't skips special tokens. Use skip_special_tokens=False during conversion
  • All tested tiktoken based detokenizers leave extra spaces. Use clean_up_tokenization_spaces=False during conversion

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

openvino_tokenizers-2024.3.0.0-py3-none-win_amd64.whl (14.3 MB view details)

Uploaded Python 3 Windows x86-64

openvino_tokenizers-2024.3.0.0-py3-none-manylinux_2_31_aarch64.whl (14.0 MB view details)

Uploaded Python 3 manylinux: glibc 2.31+ ARM64

openvino_tokenizers-2024.3.0.0-py3-none-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded Python 3 macOS 11.0+ ARM64

openvino_tokenizers-2024.3.0.0-py3-none-macosx_10_15_x86_64.whl (13.9 MB view details)

Uploaded Python 3 macOS 10.15+ x86-64

File details

Details for the file openvino_tokenizers-2024.3.0.0-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.3.0.0-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 cc583030f4c0d5fb02f66b5d7541ca48fed9501779aa96d1ff1d6b8dcc5b6d18
MD5 e46cede77b84a196e02c03cb6e019d09
BLAKE2b-256 af5efc7736eac5621874a59b31cff1c5c3f76b0157cc8516f278c8e2ce69cb37

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.3.0.0-py3-none-manylinux_2_31_aarch64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.3.0.0-py3-none-manylinux_2_31_aarch64.whl
Algorithm Hash digest
SHA256 38ddacd9460aec2d374ee82764bca3d6ffdaa0a1336ccfe30ff328a09a091332
MD5 2b9017ecc2b9d6848264b32d921937e2
BLAKE2b-256 93890fb9fa9cbe0ede844ee9417c452b49bc26bcb073d045ff7b999d976e7c29

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.3.0.0-py3-none-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.3.0.0-py3-none-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43e494371fb726d2d396e1ec1f483914209b4a22909f5495df3d495dd29b950a
MD5 e3cf04cc228940942559aa3345ee9637
BLAKE2b-256 7509529c60d0cc057b85ea9e77f923a4aeb2b77df1bf932b1425f2ca19888fd1

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.3.0.0-py3-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.3.0.0-py3-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f57292b766ea49df45f249e02709a93b356f542b8e8bf3affba432278e7ae73
MD5 289a69096cee4dd56c25dff053c8c5df
BLAKE2b-256 d4e69139e705c91dfda5959e32f82d87855fd072b55e5eb258f2264e77ae263c

See more details on using hashes here.

File details

Details for the file openvino_tokenizers-2024.3.0.0-py3-none-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for openvino_tokenizers-2024.3.0.0-py3-none-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9fd98ce0bd5f70d65e4a8ac21b246c1c1eadc6e039c2e6b0a24d976bc37ba983
MD5 9e3ce25572e80005ae60ae267bff5abe
BLAKE2b-256 ba0bb98515e7bbca6b9cb5675a009e0ea05d35c54f36b87f645214cad194427f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page