Skip to main content

Comet tool for logging and evaluating LLM traces

Project description

Comet Opik logo
Opik
Open-source end-to-end LLM Development Platform

Confidently evaluate, test and monitor LLM applications. 

WebsiteSlack communityTwitterDocumentation

Opik thumbnail

🚀 What is Opik?

Opik is an open-source platform for evaluating, testing and monitoring LLM applications. Built by Comet.


You can use Opik for:

  • Development:

    • Tracing: Track all LLM calls and traces during development and production (Quickstart, Integrations
    • Annotations: Annotate your LLM calls by logging feedback scores using the Python SDK or the UI.
  • Evaluation: Automate the evaluation process of your LLM application:

  • Production Monitoring: Monitor your LLM application in production and easily close the feedback loop by adding error traces to your evaluation datasets.


🛠️ Installation

The easiest way to get started with Opik is by creating a free Comet account at comet.com.

If you'd like to self-host Opik, you can do so by cloning the repository and starting the platform using Docker Compose:

# Clone the Opik repository
git clone https://github.com/comet-ml/opik.git

# Navigate to the opik/deployment/docker-compose directory
cd opik/deployment/docker-compose

# Start the Opik platform
docker compose up --detach

For more information about the different deployment options, please see our deployment guides:

Installation methods Docs link
Local instance Local Deployment
Kubernetes Kubernetes

🏁 Get Started

To get started, you will need to first install the Python SDK:

pip install opik

Once the SDK is installed, you can configure it by running the opik configure command:

opik configure

This will ensure that your API key is correctly set if you are using the Opik Cloud platform or that the Opik URL is correctly set if you are self-hosting the platform.

[!TIP]
You can also call the opik.configure(use_local=False) method from your Python code to configure the SDK.

You are now ready to start logging traces using the Python SDK.

📝 Logging Traces

The easiest way to get started is to use one of our integrations. Opik supports:

Integration Description Documentation Try in Colab
OpenAI Log traces for all OpenAI LLM calls Documentation Open Quickstart In Colab
LangChain Log traces for all LangChain LLM calls Documentation Open Quickstart In Colab
LlamaIndex Log traces for all LlamaIndex LLM calls Documentation Open Quickstart In Colab

[!TIP]
If the framework you are using is not listed above, feel free to open an issue or submit a PR with the integration.

If you are not using any of the frameworks above, you can also using the track function decorator to log traces:

from opik import track

@track
def my_llm_function(user_question: str) -> str:
    # Your LLM code here

    return "Hello"

[!TIP]
The track decorator can be used in conjunction with any of our integrations and can also be used to track nested function calls.

🧑‍⚖️ LLM as a Judge metrics

The Python Opik SDK includes a number of LLM as a judge metrics to help you evaluate your LLM application. Learn more about it in the metrics documentation.

To use them, simply import the relevant metric and use the score function:

from opik.evaluation.metrics import Hallucination

metric = Hallucination()
score = metric.score(
    input="What is the capital of France?",
    output="Paris",
    context=["France is a country in Europe."]
)
print(score)

Opik also includes a number of pre-built heuristic metrics as well as the ability to create your own. Learn more about it in the metrics documentation.

🔍 Evaluating your LLM Application

Opik allows you to evaluate your LLM application during development through Datasets and Experiments.

You can also run evaluations as part of your CI/CD pipeline using our PyTest integration.

🤝 Contributing

There are many ways to contribute to Opik:

To learn more about how to contribute to Opik, please see our contributing guidelines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opik-0.1.13.tar.gz (91.5 kB view details)

Uploaded Source

Built Distribution

opik-0.1.13-py3-none-any.whl (185.5 kB view details)

Uploaded Python 3

File details

Details for the file opik-0.1.13.tar.gz.

File metadata

  • Download URL: opik-0.1.13.tar.gz
  • Upload date:
  • Size: 91.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for opik-0.1.13.tar.gz
Algorithm Hash digest
SHA256 ca8a37c95082d0475e0175b2676a5670434a6dbb9139729e837b3b4143b6db1e
MD5 c23b37533602cf4fe11bccd6173a31a5
BLAKE2b-256 99de7b2fb356aefc9d981c2eb71a056e128f9b636d43f438eb3e2ffd571e12f5

See more details on using hashes here.

File details

Details for the file opik-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: opik-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 185.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.6

File hashes

Hashes for opik-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 87b5a859013277560faee1bcf1f29cd2835a5676144388416bba79a38d0426b8
MD5 4f2b590bc350a72d06a42751b898598d
BLAKE2b-256 8ee74ecd970026f32ac033225a732680b7ce6cf03d8fddf85bb23448aeae919b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page