Skip to main content

Optimizing numpys einsum function

Project description

Build Status codecov Anaconda-Server Badge PyPI Documentation Status DOI

News: Opt_einsum will be in NumPy 1.12 and BLAS features in NumPy 1.14! Call opt_einsum as np.einsum(..., optimize=True). This repository contains more advanced features such as Dask or Tensorflow backends as well as a testing ground for newer features in this ecosystem.

Optimized Einsum: A tensor contraction order optimizer

Optimized einsum can greatly reduce the overall time np.einsum takes by optimizing the expression's contraction order and dispatching many operations to canonical BLAS routines. See the documentation for more information.

As well as opt_einsum.contract acting as a drop-in replacement for np.einsum, the following capabilities are enabled by opt_einsum:

Quick tutorial

Einsum is a powerful function for contracting tensors of arbitrary dimension and index. However, it is only optimized to contract two terms at a time resulting in non-optimal scaling.

For example, let us examine the following index transformation: M_{pqrs} = C_{pi} C_{qj} I_{ijkl} C_{rk} C_{sl}

We can then develop two seperate implementations that produce the same result:

N = 10
C = np.random.rand(N, N)
I = np.random.rand(N, N, N, N)

def naive(I, C):
    # N^8 scaling
    return np.einsum('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)

def optimized(I, C):
    # N^5 scaling
    K = np.einsum('pi,ijkl->pjkl', C, I)
    K = np.einsum('qj,pjkl->pqkl', C, K)
    K = np.einsum('rk,pqkl->pqrl', C, K)
    K = np.einsum('sl,pqrl->pqrs', C, K)
    return K

The np.einsum function does not consider building intermediate arrays; therefore, helping einsum out by building these intermediate arrays can result in a considerable cost saving even for small N (N=10):

np.allclose(naive(I, C), optimized(I, C))
True

%timeit naive(I, C)
1 loops, best of 3: 934 ms per loop

%timeit optimized(I, C)
1000 loops, best of 3: 527 us per loop

A 2000 fold speed up for 4 extra lines of code! This contraction can be further complicated by considering that the shape of the C matrices need not be the same, in this case, the ordering in which the indices are transformed matters significantly. Logic can be built that optimizes the ordering; however, this is a lot of time and effort for a single expression.

The opt_einsum package is a drop-in replacement for the np.einsum function and can handle all of this logic for you:

from opt_einsum import contract

%timeit contract('pi,qj,ijkl,rk,sl->pqrs', C, C, I, C, C)
1000 loops, best of 3: 324 us per loop

The above will automatically find the optimal contraction order, in this case, identical to that of the optimized function above, and compute the products for you. In this case, it even uses np.dot under the hood to exploit any vendor BLAS functionality that your NumPy build has!

Please see the documentation for more features!

Installation

opt_einsum can either be installed via pip install opt_einsum or from conda conda install opt_einsum -c conda-forge. See the installation documenation for further methods.

Citation

If this code has benefited your research, please support us by citing:

Daniel G. A. Smith and Johnnie Gray, opt_einsum - A Python package for optimizing contraction order for einsum-like expressions. Journal of Open Source Software, 2018, 3(26), 753

DOI: https://doi.org/10.21105/joss.00753

Contributing

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opt_einsum-2.3.2.tar.gz (59.5 kB view details)

Uploaded Source

File details

Details for the file opt_einsum-2.3.2.tar.gz.

File metadata

  • Download URL: opt_einsum-2.3.2.tar.gz
  • Upload date:
  • Size: 59.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.6.7

File hashes

Hashes for opt_einsum-2.3.2.tar.gz
Algorithm Hash digest
SHA256 d3d464b4da7ef09e444c30e4003a27def37f85ff10ff2671e5f7d7813adac35b
MD5 03e4da99bfcb8606b3f783777b01e755
BLAKE2b-256 f6d644792ec668bcda7d91913c75237314e688f70415ab2acd7172c845f0b24f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page