Skip to main content

A hyperparameter optimization framework

Project description

Optuna: A hyperparameter optimization framework

Python pypi conda GitHub license CircleCI Read the Docs Codecov Gitter chat

Website | Docs | Install Guide | Tutorial

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.

News

  • 2020-12-02 Python 3.9 is now supported. Integration modules are still being worked on and is tracked by #2034
  • 2020-09-17 isort has been incorporated to keep import statements consistent. Read more about it in CONTRIBUTING.md
  • 2020-08-07 We are welcoming contributions and are working on streamlining the experience. Read more about it in the blog

Key Features

Optuna has modern functionalities as follows:

Basic Concepts

We use the terms study and trial as follows:

  • Study: optimization based on an objective function
  • Trial: a single execution of the objective function

Please refer to sample code below. The goal of a study is to find out the optimal set of hyperparameter values (e.g., classifier and svm_c) through multiple trials (e.g., n_trials=100). Optuna is a framework designed for the automation and the acceleration of the optimization studies.

Open in Colab

import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('classifier', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.load_boston(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.

Integrations

Integrations modules, which allow pruning, or early stopping, of unpromising trials are available for the following libraries:

Web Dashboard (experimental)

The new Web dashboard is under the development at optuna-dashboard. It is still experimental, but much better in many regards. Feature requests and bug reports welcome!

Manage studies Visualize with interactive graphs
manage-studies optuna-realtime-graph

Install optuna-dashboard via pip:

$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///db.sqlite3
...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

Installation

Optuna is available at the Python Package Index and on Anaconda Cloud.

# PyPI
$ pip install optuna
# Anaconda Cloud
$ conda install -c conda-forge optuna

Optuna supports Python 3.6 or newer.

Also, we also provide Optuna docker images on DockerHub.

Communication

Contribution

Any contributions to Optuna are more than welcome!

If you are new to Optuna, please check the good first issues. They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.

If you already have contributed to Optuna, we recommend the other contribution-welcome issues.

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD (arXiv).

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optuna-2.6.0.tar.gz (214.6 kB view details)

Uploaded Source

Built Distribution

optuna-2.6.0-py3-none-any.whl (293.2 kB view details)

Uploaded Python 3

File details

Details for the file optuna-2.6.0.tar.gz.

File metadata

  • Download URL: optuna-2.6.0.tar.gz
  • Upload date:
  • Size: 214.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for optuna-2.6.0.tar.gz
Algorithm Hash digest
SHA256 57ad041fd6693e354ea54a9ff1354b942a81ab866cf863cc06a1b67a8dea0ca2
MD5 9e2ff2a915bfe47975a63d851932b275
BLAKE2b-256 8dafb5ddd01d736d8530c464336daa9d6f7e3592964f14cbdac06e915ec37bf1

See more details on using hashes here.

File details

Details for the file optuna-2.6.0-py3-none-any.whl.

File metadata

  • Download URL: optuna-2.6.0-py3-none-any.whl
  • Upload date:
  • Size: 293.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for optuna-2.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 acbaf75d69c56a68b9ffc4cca15fac38563aab9892cd4a7730351c1d7f8e8620
MD5 eaec67edbff9bf0399271f3f5d9e7b1c
BLAKE2b-256 5067ed0af7c66bcfb9a9a56fbafcca7d848452d78433208b59b003741879cc69

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page