Skip to main content

A hyperparameter optimization framework

Project description

Optuna: A hyperparameter optimization framework

Python pypi conda GitHub license Read the Docs Codecov

Website | Docs | Install Guide | Tutorial | Examples

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.

Key Features

Optuna has modern functionalities as follows:

Basic Concepts

We use the terms study and trial as follows:

  • Study: optimization based on an objective function
  • Trial: a single execution of the objective function

Please refer to sample code below. The goal of a study is to find out the optimal set of hyperparameter values (e.g., regressor and svr_c) through multiple trials (e.g., n_trials=100). Optuna is a framework designed for the automation and the acceleration of the optimization studies.

Open in Colab

import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.

Examples

Examples can be found in optuna/optuna-examples.

Integrations

Integrations modules, which allow pruning, or early stopping, of unpromising trials are available for the following libraries:

Web Dashboard

Optuna Dashboard is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs and tables. You don't need to create a Python script to call Optuna's visualization functions. Feature requests and bug reports welcome!

optuna-dashboard

Install optuna-dashboard via pip:

$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///db.sqlite3
...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

Installation

Optuna is available at the Python Package Index and on Anaconda Cloud.

# PyPI
$ pip install optuna
# Anaconda Cloud
$ conda install -c conda-forge optuna

Optuna supports Python 3.7 or newer.

Also, we also provide Optuna docker images on DockerHub.

Communication

Contribution

Any contributions to Optuna are more than welcome!

If you are new to Optuna, please check the good first issues. They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.

If you already have contributed to Optuna, we recommend the other contribution-welcome issues.

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD (arXiv).

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optuna-3.1.0.tar.gz (272.6 kB view details)

Uploaded Source

Built Distribution

optuna-3.1.0-py3-none-any.whl (365.3 kB view details)

Uploaded Python 3

File details

Details for the file optuna-3.1.0.tar.gz.

File metadata

  • Download URL: optuna-3.1.0.tar.gz
  • Upload date:
  • Size: 272.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for optuna-3.1.0.tar.gz
Algorithm Hash digest
SHA256 96c7c92860c8692d3aa569d749e72b121422cb4af0ed3ad4bfbc445b61416919
MD5 2c0ecb4209f46cb25793e41598359574
BLAKE2b-256 4bf71f70ebe661c8f3950af6a775a0f3e76d0be99053c5c2cdf6959ecfc2be4a

See more details on using hashes here.

File details

Details for the file optuna-3.1.0-py3-none-any.whl.

File metadata

  • Download URL: optuna-3.1.0-py3-none-any.whl
  • Upload date:
  • Size: 365.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for optuna-3.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f79e2c2747bbf2779b1ab21de0ff553218159c36695326e8d6f2889db7d5c2a0
MD5 4513277f98de8c7ad7e59b0bc87abb80
BLAKE2b-256 b18641b2fd38e151d1d43b8d3bd5c78081ac213386e67e074856b15a4040c950

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page