Skip to main content

A hyperparameter optimization framework

Project description

Optuna: A hyperparameter optimization framework

Python pypi conda GitHub license Read the Docs Codecov

Website | Docs | Install Guide | Tutorial | Examples

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API. Thanks to our define-by-run API, the code written with Optuna enjoys high modularity, and the user of Optuna can dynamically construct the search spaces for the hyperparameters.

Key Features

Optuna has modern functionalities as follows:

Basic Concepts

We use the terms study and trial as follows:

  • Study: optimization based on an objective function
  • Trial: a single execution of the objective function

Please refer to sample code below. The goal of a study is to find out the optimal set of hyperparameter values (e.g., regressor and svr_c) through multiple trials (e.g., n_trials=100). Optuna is a framework designed for the automation and the acceleration of the optimization studies.

Open in Colab

import ...

# Define an objective function to be minimized.
def objective(trial):

    # Invoke suggest methods of a Trial object to generate hyperparameters.
    regressor_name = trial.suggest_categorical('regressor', ['SVR', 'RandomForest'])
    if regressor_name == 'SVR':
        svr_c = trial.suggest_float('svr_c', 1e-10, 1e10, log=True)
        regressor_obj = sklearn.svm.SVR(C=svr_c)
    else:
        rf_max_depth = trial.suggest_int('rf_max_depth', 2, 32)
        regressor_obj = sklearn.ensemble.RandomForestRegressor(max_depth=rf_max_depth)

    X, y = sklearn.datasets.fetch_california_housing(return_X_y=True)
    X_train, X_val, y_train, y_val = sklearn.model_selection.train_test_split(X, y, random_state=0)

    regressor_obj.fit(X_train, y_train)
    y_pred = regressor_obj.predict(X_val)

    error = sklearn.metrics.mean_squared_error(y_val, y_pred)

    return error  # An objective value linked with the Trial object.

study = optuna.create_study()  # Create a new study.
study.optimize(objective, n_trials=100)  # Invoke optimization of the objective function.

Examples

Examples can be found in optuna/optuna-examples.

Integrations

Integrations modules, which allow pruning, or early stopping, of unpromising trials are available for the following libraries:

Web Dashboard

Optuna Dashboard is a real-time web dashboard for Optuna. You can check the optimization history, hyperparameter importances, etc. in graphs and tables. You don't need to create a Python script to call Optuna's visualization functions. Feature requests and bug reports welcome!

optuna-dashboard

Install optuna-dashboard via pip:

$ pip install optuna-dashboard
$ optuna-dashboard sqlite:///db.sqlite3
...
Listening on http://localhost:8080/
Hit Ctrl-C to quit.

Installation

Optuna is available at the Python Package Index and on Anaconda Cloud.

# PyPI
$ pip install optuna
# Anaconda Cloud
$ conda install -c conda-forge optuna

Optuna supports Python 3.7 or newer.

Also, we also provide Optuna docker images on DockerHub.

Communication

Contribution

Any contributions to Optuna are more than welcome!

If you are new to Optuna, please check the good first issues. They are relatively simple, well-defined and are often good starting points for you to get familiar with the contribution workflow and other developers.

If you already have contributed to Optuna, we recommend the other contribution-welcome issues.

For general guidelines how to contribute to the project, take a look at CONTRIBUTING.md.

Reference

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Framework. In KDD (arXiv).

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

optuna-3.1.1.tar.gz (275.9 kB view details)

Uploaded Source

Built Distribution

optuna-3.1.1-py3-none-any.whl (365.7 kB view details)

Uploaded Python 3

File details

Details for the file optuna-3.1.1.tar.gz.

File metadata

  • Download URL: optuna-3.1.1.tar.gz
  • Upload date:
  • Size: 275.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for optuna-3.1.1.tar.gz
Algorithm Hash digest
SHA256 f3c8fcdb7ed4dd473485f6f61de2f2ceb9d4ad56afbae42e663e15c3f00a4c10
MD5 cd3b25ecf1b8b3ef028d68d06ab32aeb
BLAKE2b-256 bc7a71669cf69272c09f3a918a9e0367f4d9c4455348448dc268d5fdd0a2d319

See more details on using hashes here.

File details

Details for the file optuna-3.1.1-py3-none-any.whl.

File metadata

  • Download URL: optuna-3.1.1-py3-none-any.whl
  • Upload date:
  • Size: 365.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for optuna-3.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 4d641b4bdd896f48a766803a5b64286281fa3e5dbbeedc549f8e1ee6c6e3eea8
MD5 c21fdf30112575935d8a4e2e3f98937c
BLAKE2b-256 f1c71f351f872584e9e8d731cfedc5199e6f6ace06bb46b560cf7404d47d1439

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page