Skip to main content

Probabilistic Generative Model Programming

Project description

Outlines 〰️

Outlines Logo

Pypi Contributors Twitter

Generate text that machines understand.

InstallGuided generationPrompting primitivesExamplesStay tuned

Outlines 〰 is a library for neural text generation. You can think of it as a more flexible replacement for the generate method in the transformers library.

Outlines 〰 helps developers guide text generation to build robust interfaces with external systems. Provides generation methods that guarantee that the output will match a regular expressions, or follow a JSON schema.

Outlines 〰 provides robust prompting primitives that separate the prompting from the execution logic and lead to simple implementations of few-shot generations, ReAct, meta-prompting, agents, etc.

Outlines 〰 is designed as a library that is meant to be compatible the broader ecosystem, not to replace it. We use as few abstractions as possible, and generation can be interleaved with control flow, conditionals, custom Python functions and calls to other libraries.

Outlines 〰 is compatible with all models. It only interfaces with models via the next-token logits. It can be used with API-based models as well.

Features

  • 🖍️Simple and powerful prompting primitives based on the Jinja templating engine
  • 🚄 Guided generation, including multiple choice, type constraints and dynamic stopping
  • ⚡ Fast regex-guided generation
  • 🔥 Fast JSON generation following a JSON schema or a Pydantic model
  • 🐍 Interleave completions with loops, conditionals, and custom Python functions
  • 💾 Caching of generations

Available models

  • Transformers
  • AutoGPTQ
  • AutoAWQ
  • OpenAI API

Outlines 〰 has new releases and features coming every week. Make sure to ⭐ star and 👀 watch this repository, follow @dottxtai to stay up to date!

Installation

Outlines is available on PyPi:

pip install outlines

The dependencies needed to use models are not installed by default. You will need to run:

  • pip install openai to be able to use OpenAI models.
  • pip install transformers datasets to be able to use Hugging Face transformers models.

Guided generation

The first step towards reliability of systems that include large language models is to ensure that there is a well-defined interface between their output and user-defined code. Outlines provides ways to control the generation of language models to make their output more predictable.

Early stopping

You can stop the generation after a given sequence has been found:

import outlines.text.generate as generate
import outlines.models as models

model = models.transformers("gpt2")
answer = generate.continuation(model, stop=["."])("Tell me a one-sentence joke.")

Multiple choices

You can reduce the completion to a choice between multiple possibilities:

import outlines.text.generate as generate
import outlines.models as models

model = models.transformers("gpt2")

prompt = """You are a sentiment-labelling assistant.
Is the following review positive or negative?

Review: This restaurant is just awesome!
"""
answer = generate.choice(model, ["Positive", "Negative"])(prompt)

Type constraint

You can instruct the model to only return integers or floats:

import outlines.text.generate as generate
import outlines.models as models

model = models.transformers("gpt2")

prompt = "1+1="
answer = generate.integer(model)(prompt)

prompt = "sqrt(2)="
answer = generate.float(model)(prompt)

Efficient regex-guided generation

Outlines also comes with fast regex-guided generation. In fact, the choice, integer and float functions above all use regex-guided generation under the hood:

import outlines.models as models
import outlines.text.generate as generate


model = models.transformers("gpt2-medium")

prompt = "Is 1+1=2? "
unguided = generate.continuation(model, max_tokens=30)(prompt)
guided = generate.regex(model, r"\s*([Yy]es|[Nn]o|[Nn]ever|[Aa]lways)", max_tokens=30)(
    prompt
)

print(unguided)
# Is 1+1=2?
#
# This is probably the most perplexing question.
# As I said in one of my articles describing how
# I call 2 and 1, there isn't

print(guided)
# Is 1+1=2? Always
import outlines.models as models
import outlines.text.generate as generate


model = models.transformers("gpt2-medium")

prompt = "What is the IP address of the Google DNS servers? "
unguided = generate.continuation(model, max_tokens=30)(prompt)
guided = generate.regex(
    model,
    r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)",
    max_tokens=30,
)(prompt)

print(unguided)
# What is the IP address of the Google DNS servers?
#
# Passive DNS servers are at DNS servers that are private.
# In other words, both IP servers are private. The database
# does not contain Chelsea Manning

print(guided)
# What is the IP address of the Google DNS servers?
# 2.2.6.1

Unlike other libraries, regex-guided generation in Outlines is almost as fast as non-guided generation.

Efficient JSON generation following a Pydantic model

Outlines 〰 allows to guide the generation process so the output is guaranteed to follow a JSON schema or Pydantic model:

from enum import Enum
from pydantic import BaseModel, constr

import outlines.models as models
import outlines.text.generate as generate

import torch


class Weapon(str, Enum):
    sword = "sword"
    axe = "axe"
    mace = "mace"
    spear = "spear"
    bow = "bow"
    crossbow = "crossbow"


class Armor(str, Enum):
    leather = "leather"
    chainmail = "chainmail"
    plate = "plate"


class Character(BaseModel):
    name: constr(max_length=10)
    age: int
    armor: Armor
    weapon: Weapon
    strength: int


model = models.transformers("gpt2", device="cuda")

# Construct guided sequence generator
generator = generate.json(model, Character, max_tokens=100)

# Draw a sample
rng = torch.Generator(device="cuda")
rng.manual_seed(789001)

sequence = generator("Give me a character description", rng=rng)
print(sequence)
# {
#   "name": "clerame",
#   "age": 7,
#   "armor": "plate",
#   "weapon": "mace",
#   "strength": 4171
# }

sequence = generator("Give me an interesting character description", rng=rng)
print(sequence)
# {
#   "name": "piggyback",
#   "age": 23,
#   "armor": "chainmail",
#   "weapon": "sword",
#   "strength": 0
# }

parsed = Character.model_validate_json(sequence)
print(parsed)
# name='piggyback' age=23 armor=<Armor.chainmail: 'chainmail'> weapon=<Weapon.sword: 'sword'> strength=0

The method works with union types, optional types, arrays, nested schemas, etc. Some field constraints are not supported yet, but everything else should work.

Open functions

Outlines can infer the structure of the output from the signature of a function. The result is a dictionary, and can be passed directly to the function using the usual dictionary expansion syntax **:

from outlines import models
from outlines import text

def add(a: int, b: int):
    return a + b

model = models.transformers("mistralai/Mistral-7B")
generator = text.generate.json(model, add)
result = generator("Return two integers named a and b respectively. a is odd and b even.")

print(add(**result))
# 3

A great advantage of passing functions directly to specify the structure is that the structure of the LLM will change with the function's definition. No need to change the code at several places!

Prompting

Writing prompts by concatenating strings in pure Python quickly becomes cumbersome: the prompt building logic gets entangled with the rest of the program, and the structure of the rendered prompt is obfuscated.Outlines makes it easier to write and manage prompts by encapsulating templates inside "template functions".

These functions make it possible to neatly separate the prompt logic from the general program logic; they can be imported from other modules and libraries.

Template functions require no superfluous abstraction, they use the Jinja2 templating engine to help build complex prompts in a concise manner:

import outlines.text as text
import outlines.models as models


examples = [
    ("The food was digusting", "Negative"),
    ("We had a fantastic night", "Positive"),
    ("Recommended", "Positive"),
    ("The waiter was rude", "Negative")
]

@text.prompt
def labelling(to_label, examples):
    """You are a sentiment-labelling assistant.

    {% for example in examples %}
    {{ example[0] }} // {{ example[1] }}
    {% endfor %}
    {{ to_label }} //
    """

model = models.transformers("gpt2")
prompt = labelling("Just awesome", examples)
answer = text.generate.continuation(model, max_tokens=100)(prompt)

Tools

We can teach language models to call external functions to get additional informations or perform tasks, by encoding the functions' description in the prompt. To avoid duplicating information between the function definition and the description passed to the prompt, we define custom Jinja filters that can extract the function's name, description, signature and source:

from typing import Callable, List
import outlines.text as text


def google_search(query: str):
    """Google Search"""
    pass


def wikipedia_search(query: str):
    """Wikipedia Search"""
    pass


@text.prompt
def my_commands(tools: List[Callable]):
    """AVAILABLE COMMANDS:

    {% for tool in tools %}
    TOOL
    {{ tool | name }}, {{ tool | description }}, args: {{ tool | signature }}
    {{ tool | source }}
    {% endfor %}
    """


prompt = my_commands([google_search, wikipedia_search])

Response models

We can instruct models to return their output in a pre-defined format, often JSON. To avoid duplicating information between the function definition and the description passed to the prompt we define a custom Jinja filter that can extract the expected response's schema:

from pydantic import BaseModel, Field
import outlines.text as text


class Joke(BaseModel):
    joke: str = Field(description="The joke")
    explanation: str = Field(
        description="The explanation of why the joke is funny"
    )


@text.prompt
def joke_ppt(response_model):
    """Tell a joke and explain why the joke is funny.

    RESPONSE FORMAT:
    {{ response_model | schema }}
    """


joke_ppt(Joke)

# Tell a joke and explain why the joke is funny.
#
# RESPONSE FORMAT:
# {
#    "joke": "The joke"
#    "explanation": "The explanation of why the joke is funny"
#  }

With these prompting primitives Outlines makes building agents like AutoGPT, BabyAGI, ViperGPT or Transformers Agent easier by removing boilerplate prompting code.

Contributing

What contributions?

We currently only accept bug fixes and documentation contributions. If you have a feature request, please start a new discussion. The issue tracker is only intended for actionable items.

How to contribute?

Run pip install -e .[test] or conda env create -f environment.yml. To build the documentation you will also need to run pip install -r requirements-doc.txt.

Before pushing your code to repository please run pre-commit run --all-files and pytest to make sure that the code is formatted correctly and that the tests pass.

Do not hesitate to open a draft PR before your contribution is ready, especially if you have questions and/or need feedback.

Examples

Cite Outlines

@article{willard2023efficient,
  title={Efficient Guided Generation for LLMs},
  author={Willard, Brandon T and Louf, R{\'e}mi},
  journal={arXiv preprint arXiv:2307.09702},
  year={2023}
}

License

Outlines is open-source and licensed under the Apache License 2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

outlines-0.0.13.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

outlines-0.0.13-py3-none-any.whl (53.7 kB view details)

Uploaded Python 3

File details

Details for the file outlines-0.0.13.tar.gz.

File metadata

  • Download URL: outlines-0.0.13.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for outlines-0.0.13.tar.gz
Algorithm Hash digest
SHA256 f5c30ba30388c877c31d29daa140613c1134f3eec5582c7da46a8eeeb8a6e390
MD5 e7c1340b044dae72e0c434efd6fc24cd
BLAKE2b-256 e7b175f6931d046a9f8a6e0fd14a06179e46150457bc676315501d8fc5ce6302

See more details on using hashes here.

File details

Details for the file outlines-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: outlines-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 53.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for outlines-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 656aac9240264d2ca9d0ed10ff77b29ec76000f75fb090bba2a520e7211bd3e4
MD5 8874ce42a7f37c2c6dbe084c4bfe4b5a
BLAKE2b-256 30952940f2d20624dadcf6f8df0a54dd7b6df4d6fe220127c836a2969ccccb2a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page