Skip to main content

Framework for setting up predictive analytics services

Project description

Build status Test coverage status Documentation status Latest version Supported Python versions License

Palladium

Palladium provides means to easily set up predictive analytics services as web services. It is a pluggable framework for developing real-world machine learning solutions. It provides generic implementations for things commonly needed in machine learning, such as dataset loading, model training with parameter search, a web service, and persistence capabilities, allowing you to concentrate on the core task of developing an accurate machine learning model. Having a well-tested core framework that is used for a number of different services can lead to a reduction of costs during development and maintenance due to harmonization of different services being based on the same code base and identical processes. Palladium has a web service overhead of a few milliseconds only, making it possible to set up services with low response times.

A configuration file lets you conveniently tie together existing components with components that you developed. As an example, if what you want to do is to develop a model where you load a dataset from a CSV file or an SQL database, and train an SVM classifier to predict one of the rows in the data given the others, and then find out about your model’s accuracy, then that’s what Palladium allows you to do without writing a single line of code. However, it is also possible to independently integrate own solutions.

Illustration of Palladium

Much of Palladium’s functionality is based on the scikit-learn library. Thus, a lot of times you will find yourself looking at the documentation for scikit-learn when developing with Palladium. Although being implemented in Python, Palladium provides support for other languages and is shipped with examples how to integrate and expose R and Julia models.

For an efficient deployment of services based on Palladium, a script to create Docker images automatically is provided. In order to manage and monitor a number of Palladium service instances in a cluster, Mesosphere’s Mesos framework Marathon can be used for deployment, also enabling scalability by having a variable number of service nodes behind a load balancer. Examples how to create Palladium Docker images and how to use them with Mesos / Marathon are part of the documentation. Other important aspects – especially relevant in enterprise contexts for setting up productive services – like authentication, logging, or monitoring, can be easily integrated via pluggable decorator lists in the configuration file of a service, keeping track of service calls and corresponding permissions.

Everyone is welcome to contribute to Palladium. More information on how to to contribute can be found in the FAQ section of the Palladium documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

palladium-1.1.0.tar.gz (41.7 kB view details)

Uploaded Source

Built Distribution

palladium-1.1.0-py3-none-any.whl (54.0 kB view details)

Uploaded Python 3

File details

Details for the file palladium-1.1.0.tar.gz.

File metadata

  • Download URL: palladium-1.1.0.tar.gz
  • Upload date:
  • Size: 41.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for palladium-1.1.0.tar.gz
Algorithm Hash digest
SHA256 a38a97b8de2c6cc0025815601a5a40777ea7538b639f89281e33b8c22217fce4
MD5 6ded56d4ceead29f556c91e162ddb64c
BLAKE2b-256 b81f6bd2d3f0affd80475e0bba6a24208a6633d10aef54ffe7d419ded2b40e97

See more details on using hashes here.

Provenance

File details

Details for the file palladium-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for palladium-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 bae5b68c3143f2061c8a54b2ca81ba561e905557b116774c4e259a6cf3de158e
MD5 abb3a7e93ec7cecb4eb5f9f71c15550d
BLAKE2b-256 3e7e39cc296267657d1b51da1b0975e76126063de6742487ec6174119a936fe1

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page