Skip to main content

Pandas matrix confusion with plot features (matplotlib, seaborn...)

Project description

Latest Version Supported Python versions Wheel format License Development Status Downloads monthly Requirements Status Code Health Codacy Badge Build Status

pandas_confusion

A Python Pandas implementation of confusion matrix.

WORK IN PROGRESS - Use it a your own risk

Usage

Confusion matrix

Import ConfusionMatrix

from pandas_confusion import ConfusionMatrix

Define actual values (y_actu) and predicted values (y_pred)

y_actu = ['rabbit', 'cat', 'rabbit', 'rabbit', 'cat', 'dog', 'dog', 'rabbit', 'rabbit', 'cat', 'dog', 'rabbit']
y_pred = ['cat', 'cat', 'rabbit', 'dog', 'cat', 'rabbit', 'dog', 'cat', 'rabbit', 'cat', 'rabbit', 'rabbit']

Let’s define a (non binary) confusion matrix

confusion_matrix = ConfusionMatrix(y_actu, y_pred)
print("Confusion matrix:\n%s" % confusion_matrix)

You can see it

Predicted  cat  dog  rabbit  __all__
Actual
cat          3    0       0        3
dog          0    1       2        3
rabbit       2    1       3        6
__all__      5    2       5       12

Matplotlib plot of a confusion matrix

Inside a IPython notebook add this line as first cell

%matplotlib inline

You can plot confusion matrix using:

import matplotlib.pyplot as plt

confusion_matrix.plot()

If you are not using inline mode, you need to use to show confusion matrix plot.

plt.show()
confusion\_matrix

confusion_matrix

Matplotlib plot of a normalized confusion matrix

confusion_matrix.plot(normalized=True)
plt.show()
confusion\_matrix\_norm

confusion_matrix_norm

Binary confusion matrix

Import BinaryConfusionMatrix and Backend

from pandas_confusion import BinaryConfusionMatrix, Backend

Define actual values (y_actu) and predicted values (y_pred)

y_actu = [ True,  True, False, False, False,  True, False,  True,  True,
           False,  True, False, False, False, False, False,  True, False,
            True,  True,  True,  True, False, False, False,  True, False,
            True, False, False, False, False,  True,  True, False, False,
           False,  True,  True,  True,  True, False, False, False, False,
            True, False, False, False, False, False, False, False, False,
           False,  True,  True, False,  True, False,  True,  True,  True,
           False, False,  True, False,  True, False, False,  True, False,
           False, False, False, False, False, False, False,  True, False,
            True,  True,  True,  True, False, False,  True, False,  True,
            True, False,  True, False,  True, False, False,  True,  True,
           False, False,  True,  True, False, False, False, False, False,
           False,  True,  True, False]

y_pred = [False, False, False, False, False,  True, False, False,  True,
       False,  True, False, False, False, False, False, False, False,
        True,  True,  True,  True, False, False, False, False, False,
       False, False, False, False, False,  True, False, False, False,
       False,  True, False, False, False, False, False, False, False,
        True, False, False, False, False, False, False, False, False,
       False,  True, False, False, False, False, False, False, False,
       False, False,  True, False, False, False, False,  True, False,
       False, False, False, False, False, False, False,  True, False,
       False,  True, False, False, False, False,  True, False,  True,
        True, False, False, False,  True, False, False,  True,  True,
       False, False,  True,  True, False, False, False, False, False,
       False,  True, False, False]

Let’s define a binary confusion matrix

binary_confusion_matrix = BinaryConfusionMatrix(y_actu, y_pred)
print("Binary confusion matrix:\n%s" % binary_confusion_matrix)

It display as a nicely labeled Pandas DataFrame

Binary confusion matrix:
Predicted  False  True  __all__
Actual
False         67     0       67
True          21    24       45
__all__       88    24      112

You can get useful attributes such as True Positive (TP), True Negative (TN) …

print binary_confusion_matrix.TP

Matplotlib plot of a binary confusion matrix

binary_confusion_matrix.plot()
plt.show()
binary\_confusion\_matrix

binary_confusion_matrix

Matplotlib plot of a normalized binary confusion matrix

binary_confusion_matrix.plot(normalized=True)
plt.show()
binary\_confusion\_matrix\_norm

binary_confusion_matrix_norm

Seaborn plot of a binary confusion matrix (ToDo)

from pandas_confusion import Backend
binary_confusion_matrix.plot(backend=Backend.Seaborn)

Confusion matrix and class statistics

Overall statistics and class statistics of confusion matrix can be easily displayed.

y_true = [600, 200, 200, 200, 200, 200, 200, 200, 500, 500, 500, 200, 200, 200, 200, 200, 200, 200, 200, 200]
y_pred = [100, 200, 200, 100, 100, 200, 200, 200, 100, 200, 500, 100, 100, 100, 100, 100, 100, 100, 500, 200]
cm = ConfusionMatrix(y_true, y_pred)
cm.print_stats()

You should get:

Confusion Matrix:

Classes  100  200  500  600  __all__
Actual
100        0    0    0    0        0
200        9    6    1    0       16
500        1    1    1    0        3
600        1    0    0    0        1
__all__   11    7    2    0       20


Overall Statistics:

Accuracy: 0.35
95% CI: (0.1539092047845412, 0.59218853453282805)
No Information Rate: ToDo
P-Value [Acc > NIR]: 0.978585644357
Kappa: 0.0780141843972
Mcnemar's Test P-Value: ToDo


Class Statistics:

Classes                                 100         200         500   600
Population                               20          20          20    20
Condition positive                        0          16           3     1
Condition negative                       20           4          17    19
Test outcome positive                    11           7           2     0
Test outcome negative                     9          13          18    20
TP: True Positive                         0           6           1     0
TN: True Negative                         9           3          16    19
FP: False Positive                       11           1           1     0
FN: False Negative                        0          10           2     1
TPR: Sensivity                          NaN       0.375   0.3333333     0
TNR=SPC: Specificity                   0.45        0.75   0.9411765     1
PPV: Pos Pred Value = Precision           0   0.8571429         0.5   NaN
NPV: Neg Pred Value                       1   0.2307692   0.8888889  0.95
FPR: False-out                         0.55        0.25  0.05882353     0
FDR: False Discovery Rate                 1   0.1428571         0.5   NaN
FNR: Miss Rate                          NaN       0.625   0.6666667     1
ACC: Accuracy                          0.45        0.45        0.85  0.95
F1 score                                  0   0.5217391         0.4     0
MCC: Matthews correlation coefficient   NaN   0.1048285    0.326732   NaN
Informedness                            NaN       0.125   0.2745098     0
Markedness                                0  0.08791209   0.3888889   NaN
Prevalence                                0         0.8        0.15  0.05
LR+: Positive likelihood ratio          NaN         1.5    5.666667   NaN
LR-: Negative likelihood ratio          NaN   0.8333333   0.7083333     1
DOR: Diagnostic odds ratio              NaN         1.8           8   NaN
FOR: False omission rate                  0   0.7692308   0.1111111  0.05

Statistics are also available as an OrderedDict using:

cm.stats()

Install

$ conda install pandas scikit-learn scipy

$ pip install pandas_confusion

Development

You can help to develop this library.

Issues

You can submit issues using https://github.com/scls19fr/pandas_confusion/issues

Clone

You can clone repository to try to fix issues yourself using:

$ git clone https://github.com/scls19fr/pandas_confusion.git

Run unit tests

Run all unit tests

$ nosetests -s -v

Run a given test

$ nosetests -s -v tests/test_pandas_confusion.py:test_pandas_confusion_normalized

Install development version

$ python setup.py install

or

$ sudo pip install git+git://github.com/scls19fr/pandas_confusion.git

Collaborating

  • Fork repository

  • Create a branch which fix a given issue

  • Submit pull requests

https://help.github.com/categories/collaborating/

Done

  • Continuous integration (Travis)

  • Convert a confusion matrix to a binary confusion matrix

  • Python package

  • Unit tests (nose)

  • Fix missing column and missing row

  • Overall statistics: Accuracy, 95% CI, P-Value [Acc > NIR], Kappa

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_confusion-0.0.6.tar.gz (13.9 kB view details)

Uploaded Source

Built Distribution

pandas_confusion-0.0.6-py2.py3-none-any.whl (16.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pandas_confusion-0.0.6.tar.gz.

File metadata

File hashes

Hashes for pandas_confusion-0.0.6.tar.gz
Algorithm Hash digest
SHA256 676e7b4f7e77d014352a21026ec8d1f42f397be9313e5f76fd62b87e2f509b83
MD5 b1879f10935b80eb1e4c03a07ed5547e
BLAKE2b-256 6c0a663e01667aa7959df15e64eab39a0b3608575de349c678894f0416530e7b

See more details on using hashes here.

File details

Details for the file pandas_confusion-0.0.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for pandas_confusion-0.0.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5b5e03191fc7207a74175436f85b8402480be6b7b627429a034767e5ba9f5206
MD5 be7ab7c1b7e2e0aa0a9b81edeb5e3239
BLAKE2b-256 008283c2d82e76280d4f27e2bc56cd27e2fce759f77fb505ecf681a580965ba4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page