Skip to main content

Google BigQuery connector for pandas

Project description

preview pypi versions

pandas-gbq is a package providing an interface to the Google BigQuery API from pandas.

Installation

Install latest release version via conda

$ conda install pandas-gbq --channel conda-forge

Install latest release version via pip

$ pip install pandas-gbq

Install latest development version

$ pip install git+https://github.com/googleapis/python-bigquery-pandas.git

Usage

Perform a query

import pandas_gbq

result_dataframe = pandas_gbq.read_gbq("SELECT column FROM dataset.table WHERE value = 'something'")

Upload a dataframe

import pandas_gbq

pandas_gbq.to_gbq(dataframe, "dataset.table")

More samples

See the pandas-gbq documentation for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-gbq-0.17.4.tar.gz (48.1 kB view details)

Uploaded Source

Built Distribution

pandas_gbq-0.17.4-py2.py3-none-any.whl (25.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pandas-gbq-0.17.4.tar.gz.

File metadata

  • Download URL: pandas-gbq-0.17.4.tar.gz
  • Upload date:
  • Size: 48.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for pandas-gbq-0.17.4.tar.gz
Algorithm Hash digest
SHA256 70ac57cc6ebf9d1e1c1c810f5ccac710163acd4c3d13e8badea27bb66fae19f7
MD5 621480d37c161ce411aa94267b1abb32
BLAKE2b-256 17beaab6c8039449ad2f5578bd31806a9a20b8f1198a1e41627be31f1586cdc6

See more details on using hashes here.

Provenance

File details

Details for the file pandas_gbq-0.17.4-py2.py3-none-any.whl.

File metadata

  • Download URL: pandas_gbq-0.17.4-py2.py3-none-any.whl
  • Upload date:
  • Size: 25.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.3 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.10.0

File hashes

Hashes for pandas_gbq-0.17.4-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3b3714167bdc4b1a6013ff6286a452727efbceb412922a2ca39aa996e8e8b129
MD5 210a973422c4124506344ddc7f161d01
BLAKE2b-256 bbbda27fb679b4bb0c8f6f890ea0028d96bb24befb56f2d00bd9f8ec7d229bcd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page