Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pandas-0.16.1.zip (5.8 MB view details)

Uploaded Source

pandas-0.16.1.tar.gz (5.0 MB view details)

Uploaded Source

Built Distributions

pandas-0.16.1-cp34-none-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.4 Windows x86-64

pandas-0.16.1-cp34-none-win32.whl (3.6 MB view details)

Uploaded CPython 3.4 Windows x86

pandas-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.3 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.16.1-cp33-none-win_amd64.whl (3.8 MB view details)

Uploaded CPython 3.3 Windows x86-64

pandas-0.16.1-cp33-none-win32.whl (3.6 MB view details)

Uploaded CPython 3.3 Windows x86

pandas-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.16.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.2m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.16.1-cp27-none-win_amd64.whl (3.9 MB view details)

Uploaded CPython 2.7 Windows x86-64

pandas-0.16.1-cp27-none-win32.whl (3.6 MB view details)

Uploaded CPython 2.7 Windows x86

pandas-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (7.3 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.16.1-cp26-none-win_amd64.whl (3.9 MB view details)

Uploaded CPython 2.6 Windows x86-64

pandas-0.16.1-cp26-none-win32.whl (3.6 MB view details)

Uploaded CPython 2.6 Windows x86

File details

Details for the file pandas-0.16.1.zip.

File metadata

  • Download URL: pandas-0.16.1.zip
  • Upload date:
  • Size: 5.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.16.1.zip
Algorithm Hash digest
SHA256 3d8140c28b824c853c9e1a16f9a7f6106f7b0f356bae0551051e9d5d6ebc4b4c
MD5 d465643d588c4f886b8e796ae56673ad
BLAKE2b-256 a233d0c5412d3c223eaccb2925edb7e33470e2e57ec8e1df8cecb358f7f811f0

See more details on using hashes here.

File details

Details for the file pandas-0.16.1.tar.gz.

File metadata

  • Download URL: pandas-0.16.1.tar.gz
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.16.1.tar.gz
Algorithm Hash digest
SHA256 570d243f8cb068bf780461b9225d2e7bef7c90aa10d43cf908fe541fc92df8b6
MD5 fac4f25748f9610a3e00e765474bdea8
BLAKE2b-256 b784ec4e96c286f45c8c73e515881329a7baaa7b048639c2ff4000e5dbbddf3e

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 7844bc8e73e62cdfc53805719476ecca4625562003cc628f22be13b0104b9035
MD5 7497cbec7c64113c910f2614a71d795c
BLAKE2b-256 2d0117ce89b9902ef1fd84f560ca6f74cf2d5b88416c14ed8b37d645ebc6e473

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 53c9596f044e1da3e20ee2204928e7502a1b05744812f745e9befc93c2d8f4dc
MD5 52e4cc58a439c77392ed3184de1d4979
BLAKE2b-256 8df7f86f0d09305a2020a273f2a67f2c4977d78cbf8f9974d8c7f40a69ed2fa6

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9fa5e07bbddab46ea2b23c10cf72c25ab6ab8563c8f5f1decfb838e7ff4f4f28
MD5 0fdc997452b0489e016572eeef7bdaff
BLAKE2b-256 a219bc0ce2729b872eabb367ca6f9dc5f0581023f3e1dd5994607939fd7ab988

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 452870318a6e327d33c4a8ea6402fbfdafe49ea80f6cc0550a96771767ea9d32
MD5 dcd6b13cc6d2ce923538500067b59d14
BLAKE2b-256 6ad5d4ddd8a93163eda5662f0ba9f04f354630627610db670586bf7a6e0ad738

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp33-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp33-none-win32.whl
Algorithm Hash digest
SHA256 8860ce4aaec64bd5f2728cf8852d24c7ea77985719d9f41af81d18e16ef41f40
MD5 fd9aae06ce11b1cf6a0d0e960f07331a
BLAKE2b-256 6c4c8b39f4fb5c56f60cecb86a47d579ce6ea04a3d1fb1a47c54918921346a8b

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 06bf29bc9e2078f21cacd884013b76609a12df97f10264c51f4b4ec4dfa27ed1
MD5 c5a63417b3a19ab89193308665829bfa
BLAKE2b-256 74ad52ace0754123674f154b14b130df7aee6575a8779184bbf29011aca50a69

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp32-cp32m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 30a8c1ca4b5b2655bffea885d6226116afa5f939d4b6e79e1daf575bd5f434cc
MD5 713d0cf870d6b09a47e4dd163104aca5
BLAKE2b-256 f6061ecdcfda5a0535d5eef7565c5cd5240b096039a6bc2d5a8c58c46a1db7ba

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 8eaca6b0b16b3306be7d5f6cb65f85a414be833f747a19870ee8383dff202060
MD5 32539d932723bf949151f54209d08e79
BLAKE2b-256 d5b3b8d6fcb81ba0891b68c522dfdf7d2f101d4a4c22931b314f5dc52bd007ac

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 037e1bd726250f4469dfcdbf0c87c724d72a5fd885eef734a5b0ebf39a505130
MD5 f32d93239ab51e608cb8906ae6bd091d
BLAKE2b-256 b661110fbb59c75260de84ea9141b986b70e7834b8e52e1e7adbc639feaf0289

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 72222d41d1d9b7f3621b56aa612ca66471be4d3da5b7776549061935a9c02f65
MD5 e60df6057c0a5d14838fca0986c74da7
BLAKE2b-256 232d6c1b7f7818193b066f796c778f9ccef645565ac9ebaaa66ba5513244d42a

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp26-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp26-none-win_amd64.whl
Algorithm Hash digest
SHA256 c1fa050c252ff44dae3a8b19153c206494edbd1554be4a66cadfdad8db0b7331
MD5 b3bd4d81c47634beaa645349582016ee
BLAKE2b-256 0749d439e88f5db7c75f8cfd97cb59551dde2e8bbbd4c7ecfa06368f776d835c

See more details on using hashes here.

File details

Details for the file pandas-0.16.1-cp26-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.16.1-cp26-none-win32.whl
Algorithm Hash digest
SHA256 753f2f504b3e5583ce62e3ea1b3c83a5aaf77b1ca9d99f5419a0a969b9907934
MD5 4828a1609f633ae07ce3f5f990e5f539
BLAKE2b-256 2839704aeed194769f879eacc117fe4c85d339725788a0221baab34e9cb1fbd8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page