Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pandas-0.17.1.zip (7.7 MB view details)

Uploaded Source

pandas-0.17.1.tar.gz (6.7 MB view details)

Uploaded Source

Built Distributions

pandas-0.17.1-cp35-none-win_amd64.whl (5.5 MB view details)

Uploaded CPython 3.5 Windows x86-64

pandas-0.17.1-cp35-none-win32.whl (5.2 MB view details)

Uploaded CPython 3.5 Windows x86

pandas-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.17.1-cp34-none-win_amd64.whl (5.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

pandas-0.17.1-cp34-none-win32.whl (5.3 MB view details)

Uploaded CPython 3.4 Windows x86

pandas-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.17.1-cp33-none-win_amd64.whl (5.5 MB view details)

Uploaded CPython 3.3 Windows x86-64

pandas-0.17.1-cp33-none-win32.whl (5.3 MB view details)

Uploaded CPython 3.3 Windows x86

pandas-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.3m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.17.1-cp27-none-win_amd64.whl (5.6 MB view details)

Uploaded CPython 2.7 Windows x86-64

pandas-0.17.1-cp27-none-win32.whl (5.3 MB view details)

Uploaded CPython 2.7 Windows x86

pandas-0.17.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (9.0 MB view details)

Uploaded CPython 2.7 macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.17.1.zip.

File metadata

  • Download URL: pandas-0.17.1.zip
  • Upload date:
  • Size: 7.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.17.1.zip
Algorithm Hash digest
SHA256 22d8bfbe3356404495bd7da379b7c0362668845db39718f48d7f4fdb88eba062
MD5 ae0bdd2f1e6eae74a8462002a7eba289
BLAKE2b-256 52a6948db1f03286596d7973219602b9b60f66b6292b9cf42e3a5db91bc298bb

See more details on using hashes here.

File details

Details for the file pandas-0.17.1.tar.gz.

File metadata

  • Download URL: pandas-0.17.1.tar.gz
  • Upload date:
  • Size: 6.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.17.1.tar.gz
Algorithm Hash digest
SHA256 cfd7214a7223703fe6999fbe34837749540efee1c985e6aee9933f30e3f72837
MD5 1e18b9a5496ec92752b3cb6674bbe987
BLAKE2b-256 a98e034d108c2b2834ad4cc5bf7fb2b4d96bacf135034a2e2d946f7b4661d461

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 0a8128a8d99f548740d6e5c61d4f7cf8c51336e729a514ece822f0ebc4682904
MD5 469265697def0aaced399d6106799a48
BLAKE2b-256 452d0fa39da4c5be1e00b970a7f5160efbb71823e72b05ae65bd6b8758222e7e

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 9f5724375d5113ab143ba9c0e4b9fd9da166c689eaef304702b4590773a841b8
MD5 604d602e485caba547c8a23284ef2bbf
BLAKE2b-256 9fd75b153cb3e47c8eef2b48ee44509c5558560aad09084bf257d552bb7be3e2

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 05103c91be255bfc47dd213e8def39f1b298dcbb82149557b79bcc7fb3624d12
MD5 3e7da1db5a29d953e8bc7243a6fcf233
BLAKE2b-256 18f77dbf6342eabaf6fffdfbbee414c1375d21d44f5c2a844708d2cd518f7472

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 602da4855aa308280dc0970b81734ca08e0bbf49e845cce0de59cf39d5d8a02a
MD5 fd81567946785e9ea2766f93c18e9a61
BLAKE2b-256 479e7005b43be7eb3ed6eb6822e596d07b8e40485debc3e9fc99e6fcdc2ecef7

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 d61862c8f9b59b07995035b9492dabb78bb71aacc2d5db8cf35b56fcf040ce4a
MD5 c211bce54e4b6391edd2f7375dd3ec11
BLAKE2b-256 d662b0cba4c60b40cd673c1129a24fa78f6f1a61a4dc4d76f5c11aa406945db6

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 47d0683990419716271b83757f36f6ccff771c02fc5e0689ab1a675a0699a3a5
MD5 edb369ba47d7f2b1224d7934079f9d23
BLAKE2b-256 3969b8461e05e98055e9390f69d66cca052695c4e8e6ddcaf04642fef1ec657f

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 162fdc8282868e77cd7bd6c89c0ad0bace9bced4fc97484d0deb8b9f24dafc80
MD5 8fae3432f0b047ca7fd4a6d02bbea1e6
BLAKE2b-256 c81feaba255eb107bb0dfd6ed666bbd20f973ed562122aac16f657e4cff86ca0

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp33-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp33-none-win32.whl
Algorithm Hash digest
SHA256 05047c3da18658d0054a50447dcc1bb415081db0b2bbdd0118ab211ed30baff9
MD5 cb928d0a4ce3801b7216ecb654d92acb
BLAKE2b-256 1e9838d9631740c8a5d9d10e87ea577b9545c39604c29333f74f435f4df0bff6

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5da8a5f840306e819cecc5e97daf75ebd67458fb3107c7b38322743918c1e1bc
MD5 a4ce2d25d12634477febf2986c2fc615
BLAKE2b-256 f000e2e558ac67db2a0525977deb84ec041cc7cf4755b2615a206cca2eb3a258

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 30c665b4f4efb1e788453a85936c486cccd58431c20befc53e5cc1416a785c75
MD5 2d2743bdb6e80e8733bb554837bf3761
BLAKE2b-256 6dcfa462278f24a0624f5d0a110af6e7fd2def2cca06bb089909b06722cd129b

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 725241455e9cac4c1f312c24aad483f8ed08a630d7d47e45ae180a68a26b26e8
MD5 a638c8c5c1d4290b92c205a9e6abc91c
BLAKE2b-256 e75f20c01f1ceb55993ca790d0b3f47d09a6131354d373ae46b5a6e3c47eae32

See more details on using hashes here.

File details

Details for the file pandas-0.17.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.17.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 831de4dfd23369734fd03edeca44a352e64ac97a74389506628a3ac1c5ffbfe2
MD5 1f912027e6754ce6cc2c0238240e7881
BLAKE2b-256 9bf1ae291581ef68a9e71d7a8048a9df6b4ff984b04f2b2051b534232aacf372

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page