Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

pandas-0.19.1.zip (9.5 MB view details)

Uploaded Source

pandas-0.19.1.tar.gz (8.4 MB view details)

Uploaded Source

Built Distributions

pandas-0.19.1-cp36-cp36m-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.19.1-cp36-cp36m-win32.whl (6.5 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.19.1-cp35-cp35m-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.19.1-cp35-cp35m-win32.whl (6.5 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.19.1-cp35-cp35m-manylinux1_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.5m

pandas-0.19.1-cp35-cp35m-manylinux1_i686.whl (16.9 MB view details)

Uploaded CPython 3.5m

pandas-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.19.1-cp34-cp34m-win_amd64.whl (7.0 MB view details)

Uploaded CPython 3.4m Windows x86-64

pandas-0.19.1-cp34-cp34m-win32.whl (6.6 MB view details)

Uploaded CPython 3.4m Windows x86

pandas-0.19.1-cp34-cp34m-manylinux1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.4m

pandas-0.19.1-cp34-cp34m-manylinux1_i686.whl (17.0 MB view details)

Uploaded CPython 3.4m

pandas-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl (16.7 MB view details)

Uploaded CPython 2.7mu

pandas-0.19.1-cp27-cp27m-win_amd64.whl (7.1 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.19.1-cp27-cp27m-win32.whl (6.7 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.19.1-cp27-cp27m-manylinux1_x86_64.whl (16.7 MB view details)

Uploaded CPython 2.7m

pandas-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (11.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.19.1.zip.

File metadata

  • Download URL: pandas-0.19.1.zip
  • Upload date:
  • Size: 9.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.19.1.zip
Algorithm Hash digest
SHA256 62a441ef62e1171cc6ecae7f46a768014c233682f498d72e77099fef841a3294
MD5 7f04bb01cae57c20ae7ef5c77d95aa19
BLAKE2b-256 7132d3c23a3147e45bf8582b2e3ef8ba4dac49112bf26cc81e0d722ef692a6ab

See more details on using hashes here.

File details

Details for the file pandas-0.19.1.tar.gz.

File metadata

  • Download URL: pandas-0.19.1.tar.gz
  • Upload date:
  • Size: 8.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.19.1.tar.gz
Algorithm Hash digest
SHA256 2509feaeda72fce03675e2eccd2284bb1cadb6a0737008a5e741fe2431d47421
MD5 e0a688db072455a9ecdda3cb87ecf654
BLAKE2b-256 0b9c20a36af2016a9554378ebad2c69f63fd87bd0cc612eeed068fab656ec661

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7f9e60df5bf967c510a787dab0515cf1181638dc0037dfdf707bf3aed9df1416
MD5 3eb6803198e58f4d8ad139eb5695d978
BLAKE2b-256 763de3fa9fae70db72ec2dffebf495217b7b974aa15e5709797e83b860fc7c7b

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 11ed6b510139690c4f2668ce8c4f72f84fe4c62db60f52796581ee72eee90ac7
MD5 94c8d5de7b547e3c12d020efb42602ef
BLAKE2b-256 8b7111bc3c85e7a859aa1cecbc69c3e30454d61e72309c48208e14fe33a61aef

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 2b8685144bb9c68ec7da482164567167936e962a096914e59e74d5d1694ca08a
MD5 bd60fa807db996b84a6bcdd931a4005a
BLAKE2b-256 773504b55e057da428bc546b73f8eae72567b92b0cff3fd4dfa5fec6edac3307

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 53f94f97c5980d724fc6a811c07ee2a2c0325838794b2ffe755d148e5e9ae41f
MD5 e4c1a1c5d5cc9b8625b7023ddfcb17f3
BLAKE2b-256 26f4146fa3b0b66c830560c3006392452bc70b03c78cc761e9186304506f65e1

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 df7f3f709c00f95e1eb00ee351893ccf70ef9f6dd7779aa5bb71472a75046b52
MD5 303b19a1d5666ce26a6c65126e429241
BLAKE2b-256 379e0c906da36997ecf09618d06346c8ad2d0b76fc1da7907f0ec2f4b86fd744

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d961b85189b4cd63fe0bb97b62db89806cbf95f67e184279ea1f075f7de201b1
MD5 a0660eb456358e5586af070a873a1e10
BLAKE2b-256 3ba653fbf567cf7e8fab02a7872bb0930287bac8cee8414408600c21d014a833

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 078f350333417ce90c221d3099e6607c38f52124893a22e59063842537a8f316
MD5 f40fc7b2c5d202ca5ca3f2aa660216d2
BLAKE2b-256 a093ef60d69f5662a9160822d70b0564d7a4a88db06efd323850fe8142d121e2

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 353fe64a665ab684760e385eabcf2bc0294884ecba1ff6991c2707af47e4c78c
MD5 d9fa689a0cd367b3c61641996f89fa58
BLAKE2b-256 b2d65cccaf49218edc4058e1f2dc9965ea384cd9836637ecccdcad24790f45aa

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 f28b2defbaf17ac879af2069168111916795c6decb841e76dbdc16ae42632020
MD5 7218d7d68d7ac4e2bdcc1f6e13c2fbe0
BLAKE2b-256 291ae7c9d5f08fe410574a30aeac20413f14852edf8a88f5db1ed2ce8dada483

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e860732e4d69c911cd8e3399ae416460d071020da8420da6fae5494a8d58b955
MD5 886c270c7f83323b5e6a587f259652db
BLAKE2b-256 8e34df5ba9212cc127ec3582b80cefff4fedf4e75f689be7a1881d764f51d23f

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c9bee9c35e5df1154f1f032e6348a10d3e7402289231860c17b8d39620ecf864
MD5 22506fd7acaa6b576490d833368a7856
BLAKE2b-256 4dfdacd9427ff7bc56392145ccf10c90d3772b007c9b6461e031f7fb89a6a134

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 70b48ed89783d28f2f46040ed503d945ed66df8b74e806f48dd6f02f15c5a0b0
MD5 b5444741aaf130ec2e5905dcd49875c7
BLAKE2b-256 83c488b080ad1f42f437e1b330964084abf553471202388ed4ada11fb1b24184

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6d07ed108e3cd0b6ceb3b4b8b76b534f5b102ea226af2bc176cc907f76de978e
MD5 13ece96d94983c468aebe5afd131194c
BLAKE2b-256 fb9462a7d9ac4bff944acea8041d12cbae4101c4e21ba7e33ff7ed10e3296bfc

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 96416eda09e48f01c38233e23c5ea2f9bd3afffbec9813c7a93d3782b0c594ef
MD5 61a2f96c0e70fc226af94538ab05f20a
BLAKE2b-256 ac1771010c2029722d5f0a18efc1dda33b20c3d4fa9d3e3e2000e01266f063e6

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 e0fb5fa33fb129f8105a40d32af090543b24e30b837a450cf08b78efefbf937d
MD5 db74508db7110bd3cc1bc52bd4efcfc9
BLAKE2b-256 0d22489d7639fb010865c9db7556095931830193e66e851fd92015038e3cd570

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 90afa06a78370374f84ba8347edf6a091d56fa15432817749b65520ea11ef48e
MD5 fe7ea99e4bb670e13c6d9355353fe168
BLAKE2b-256 fd57754dba02a3339408fccec264aa94c7ffd744d4e6728b06cf4e3193c2fcb0

See more details on using hashes here.

File details

Details for the file pandas-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.19.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9185869463cefe4178734ccdc9cebaef6af77df38567b58e2b26f1ad5c2b6052
MD5 bb015911cc74a9001ec836644ad7ad67
BLAKE2b-256 9c1d32693febd4b0f5b51318a08145cd0ee8aef098ba44b5db53e3721b56cb6c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page