Skip to main content

Powerful data structures for data analysis, time series,and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Note

Windows binaries built against NumPy 1.8.1

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.20.2.tar.gz (10.3 MB view details)

Uploaded Source

Built Distributions

pandas-0.20.2-cp36-cp36m-win_amd64.whl (8.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.20.2-cp36-cp36m-win32.whl (7.5 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.20.2-cp36-cp36m-manylinux1_x86_64.whl (24.5 MB view details)

Uploaded CPython 3.6m

pandas-0.20.2-cp36-cp36m-manylinux1_i686.whl (23.0 MB view details)

Uploaded CPython 3.6m

pandas-0.20.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.8 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.20.2-cp35-cp35m-win_amd64.whl (8.2 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.20.2-cp35-cp35m-win32.whl (7.5 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.20.2-cp35-cp35m-manylinux1_x86_64.whl (24.0 MB view details)

Uploaded CPython 3.5m

pandas-0.20.2-cp35-cp35m-manylinux1_i686.whl (22.5 MB view details)

Uploaded CPython 3.5m

pandas-0.20.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.20.2-cp34-cp34m-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.4m Windows x86-64

pandas-0.20.2-cp34-cp34m-win32.whl (7.5 MB view details)

Uploaded CPython 3.4m Windows x86

pandas-0.20.2-cp34-cp34m-manylinux1_x86_64.whl (24.4 MB view details)

Uploaded CPython 3.4m

pandas-0.20.2-cp34-cp34m-manylinux1_i686.whl (22.7 MB view details)

Uploaded CPython 3.4m

pandas-0.20.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl (22.4 MB view details)

Uploaded CPython 2.7mu

pandas-0.20.2-cp27-cp27mu-manylinux1_i686.whl (20.7 MB view details)

Uploaded CPython 2.7mu

pandas-0.20.2-cp27-cp27m-win_amd64.whl (8.3 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.20.2-cp27-cp27m-win32.whl (7.6 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl (22.3 MB view details)

Uploaded CPython 2.7m

pandas-0.20.2-cp27-cp27m-manylinux1_i686.whl (20.7 MB view details)

Uploaded CPython 2.7m

pandas-0.20.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (15.0 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.20.2.tar.gz.

File metadata

  • Download URL: pandas-0.20.2.tar.gz
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.20.2.tar.gz
Algorithm Hash digest
SHA256 92173c976fcca70cb19a958eccdacf98af62ef7301bf786d0321cb8857cdfae6
MD5 641ccdcf4d1df8d26dcaf042999fd41f
BLAKE2b-256 376920c19ebb5dd713d8e92f68544c766fd92592103f48e220d14accaebed37e

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a102114b04e2e5efd1d9a73b8717874c644db50ab1fcdb96f12e2d063ff3b06f
MD5 a6ea442b82c547143d7fc973089cb83e
BLAKE2b-256 9aaa00fdf45f2e8d25c7f19bcc22f151f4cf5b39989fa57558a745980c2aa193

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 645fd017f4c88df5a244c88f9e6b6bbfb14afa2d9fa9f3ad24861f31b4ebacd8
MD5 b85aa3675b9b4bf35ee1dcedd1e3935b
BLAKE2b-256 b0fefe22b908a314879a9ca4a6be84da41c499b420242176b478a2ea784427b8

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cb88bb0de30d7c2b25e3d1bacff1b5e405f401cc7ea2c414ffa25f03cdd7622e
MD5 650d766b3a47e3997c990171937a4c68
BLAKE2b-256 2de25f3e28995c3464eeec9b4fbfb32c2d876d14295559682d1a769cc8b63890

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9c426662892c6de549cd229a6bd5eed4daa3a3cf51cc02412a7971bee4699d9b
MD5 41b1fb1c9e7c0f249bb3af6cb2747185
BLAKE2b-256 c48a8531382d498d35bd7ce0e11b935495e95c8122d42eacb73a71144244de48

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 20e06f091278646c58cd1b227bd671b505ba911a581bb77b4c5ca516c89fc846
MD5 37c72b3abe3d0f0d009be570a3e14c36
BLAKE2b-256 a6a7a8c64649b235199919e8b0b8a0f2785d28f70c0a14a630f023d4920de75a

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 da206b338c7157be7d9fd22c070d6bd217260aa6f10d7260af9ebc138bc1d243
MD5 49fbfdf0a77b21d57326b9d2b7ce4ac6
BLAKE2b-256 0aa604f430c55983775ee039c478db7528c909d058d3bb2a8aa6cbdc51a7639a

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 67593d650065816bb6b237c07577ed6c15e44b217cf6caaeb258735a5a6611ed
MD5 3c022e82bea7914d1ca95ce1f5355d42
BLAKE2b-256 51cc4dc4414b290fb357e396a49fa8128a516e97879302d53a0c2881115e3e29

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f89d61ee18b7fd8f613e71ba4e7f3cf29e4c4b4f6e7df2904605c09124729c67
MD5 7a580fefa65b1f0f17be56320690deb2
BLAKE2b-256 fc2bd397cab8fd0c306ec31178f088096d3c3528840116d05ed275d44048cb0d

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c50f9f8cc2b340cfcab364b8c5341c5a31bc75671de77f4bbb3315575a7889fd
MD5 e0815737ed0d5c4ccb3b3ad1060da2c4
BLAKE2b-256 40877078806bc42c3a1f2912f0403ebc95285667055afa4c8b7147530269d662

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1038ed65cd8b982c8685c04c64e17b96ae21ec0e869427055a6c7bf2d749dc5e
MD5 a95b6c856183e943d98ce2eea867e605
BLAKE2b-256 b74eff672d0075936476ebb6cab82a1e62aa5797b06d108f30e337fd36421791

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 97889dc63f1e1d43fbf7b4bf423cb6d166a1953b9fe0163fd57bedc54bad3300
MD5 cf0e4c3fd0b54799365a0a549b0bef09
BLAKE2b-256 36a2c02a6a27bf0abc588f6ad052a01c0fbf68f6221cf29cdeb6edd4161721bd

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 688a35124610e2cd0f648981403d41264cb11589896881ac0dacbed64a537e97
MD5 cee200eb59826df1281537d5011ffd91
BLAKE2b-256 dc6fd73e5abece8b1ff341da82f9a30a8ade4b7c1c029ca28ba752ac2ab02626

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d89476a98ba9f5fe064436475cf40d3c4d15534ef878b9a23c90f413ed32e45b
MD5 e8ef94cd827ffda1e95655d755f48d19
BLAKE2b-256 67f569b53062f97f9d52f357dcf19e45ca4e12fd8f63cc18b98ff809fef241ca

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 69d2e3223c5566abf50c7eaa90dce166298af5ea6bbef8e568093657944ca603
MD5 4d190a02b35be49598d318c00f51905e
BLAKE2b-256 88f1a9be828003623cae9494765517df9228edd3aeafde6d102e15bea5b9b897

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 d5dc3bd06b4d5d6c00fe5124ca770f290355e2da4c6951043fa1d98ef23b48ab
MD5 161507bac8a58affb1e45e7b7e46b93d
BLAKE2b-256 51ece30f2a6ffc6dd9470e96e1e669c11bf0b447d786e971d9e5e66a60c38077

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ceb8d90fa92f56a2b5a1ec1574eed06f645e2f65d0afc26eaacb28644fdb7bd5
MD5 93c6ad4f893d7b386ceeea2bd218568c
BLAKE2b-256 d3e2aae1ea8214e4c74ae86d89996ead65514a1b0ded5152f19df1b8f6d93438

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9c3fdbfd72fb73e9a8b7f45967bcf9d158d47340c970cf73bc3bb59d789422fc
MD5 5e9e3f55e5bd64dba3527a5d8b238160
BLAKE2b-256 7a3f1c6f3e496618fbff4d9bb90e9ace81a036fd9b799eab7af5aacf66c40402

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 528988612b3fc9c9d4a85b4d8551b0b399342427c9cfc7e4562158c79da8ff00
MD5 996f15c3d54a9feac5c249cbedc1da01
BLAKE2b-256 dee6069b2fe9608c767694377030145bab1d61c97393c750ffd44d930f69d826

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c320d2dccbd0fda89c8f734e2f0ddc954537394cb4f137715a916dc10062f9e3
MD5 ee8fcb51d6bba414f32ed26f6af1b929
BLAKE2b-256 ac22295f0b6bffc55e2528aee3f6ae0ee474fbbbc573034fac99d39bc7363a5f

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9ad12c5406de8eabd22b7be364fe1f4466300301dd52b1f44a3bc5d18b06f081
MD5 31a4d180048f72337d53cc7b87424568
BLAKE2b-256 4439e71009a0ebdbb6206b9fbde0367fc5cb5bb7fdb4521ae785ca7bd63d36aa

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0a4ee1e92b17f3dab52e654d2a4b210b2c91111bffaa3f41517f04993dd920c6
MD5 8d10decf7dce6536a72e8854c2f2e17b
BLAKE2b-256 8088c150a48ff685c1e9f68b115f8689173f23bfd5b8e452f9084e4766be29b2

See more details on using hashes here.

Provenance

File details

Details for the file pandas-0.20.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.20.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1667e7caf173acd697226bb5a82b2233db0c4b6c563bad5b6c9bc4dedc5b7c55
MD5 54bbdaad9dc2ed91f1436fcfdc7d2e71
BLAKE2b-256 60ec9876f9d6bbecf83ce555fd51cfdad587788c460cd3558895224721f4ee68

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page