Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with structured (tabular, multidimensional, potentially heterogeneous) and time series data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal.

pandas is well suited for many different kinds of data:

  • Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet

  • Ordered and unordered (not necessarily fixed-frequency) time series data.

  • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

  • Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. For R users, DataFrame provides everything that R’s data.frame provides and much more. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data

  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects

  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations

  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data

  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects

  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets

  • Intuitive merging and joining data sets

  • Flexible reshaping and pivoting of data sets

  • Hierarchical labeling of axes (possible to have multiple labels per tick)

  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Many of these principles are here to address the shortcomings frequently experienced using other languages / scientific research environments. For data scientists, working with data is typically divided into multiple stages: munging and cleaning data, analyzing / modeling it, then organizing the results of the analysis into a form suitable for plotting or tabular display. pandas is the ideal tool for all of these tasks.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-0.23.2.tar.gz (10.0 MB view details)

Uploaded Source

Built Distributions

pandas-0.23.2-cp37-cp37m-win_amd64.whl (7.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pandas-0.23.2-cp37-cp37m-win32.whl (6.8 MB view details)

Uploaded CPython 3.7m Windows x86

pandas-0.23.2-cp37-cp37m-manylinux1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.7m

pandas-0.23.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.2-cp36-cp36m-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

pandas-0.23.2-cp36-cp36m-win32.whl (6.6 MB view details)

Uploaded CPython 3.6m Windows x86

pandas-0.23.2-cp36-cp36m-manylinux1_x86_64.whl (8.9 MB view details)

Uploaded CPython 3.6m

pandas-0.23.2-cp36-cp36m-manylinux1_i686.whl (7.8 MB view details)

Uploaded CPython 3.6m

pandas-0.23.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.2-cp35-cp35m-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.5m Windows x86-64

pandas-0.23.2-cp35-cp35m-win32.whl (6.6 MB view details)

Uploaded CPython 3.5m Windows x86

pandas-0.23.2-cp35-cp35m-manylinux1_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.5m

pandas-0.23.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pandas-0.23.2-cp27-cp27mu-manylinux1_x86_64.whl (8.9 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.2-cp27-cp27mu-manylinux1_i686.whl (7.8 MB view details)

Uploaded CPython 2.7mu

pandas-0.23.2-cp27-cp27m-win_amd64.whl (7.3 MB view details)

Uploaded CPython 2.7m Windows x86-64

pandas-0.23.2-cp27-cp27m-win32.whl (6.5 MB view details)

Uploaded CPython 2.7m Windows x86

pandas-0.23.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pandas-0.23.2.tar.gz.

File metadata

  • Download URL: pandas-0.23.2.tar.gz
  • Upload date:
  • Size: 10.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pandas-0.23.2.tar.gz
Algorithm Hash digest
SHA256 4489f2bdfa0259752a3afceebfff49056f7c9c0366ea315cf191953d364a2593
MD5 0307eb1f0d996683a274cc8a6e4e7f11
BLAKE2b-256 67e18b99990c69ae501f7855d8307dc358a44d6f0ab917261b534cd4eabae912

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 267b7c8afef047055fc9f5ae7e9cc0b09f121f02f6ff123343392938adee6f7a
MD5 a0ee4b8677073fd46071814311299154
BLAKE2b-256 eec2fb027ab321657acb42d270e26a4f35795075f394dbc30f67e19883fdb375

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 218b43b6b8f1a835f69c09bec5f7930015c055d3b0b5fa3fd5f110b2b872b3ea
MD5 880fee65d457546a336212e56a2bd3f9
BLAKE2b-256 6d8d1def0506d1bef2b67e3485505b7d335b8b34f32cfd8211b8a83fd4c0c113

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4a6c2b79f3a56052291b4de46dbc3fee020cb0eb9fef61a78de821f48a63e568
MD5 4a17de68fa201e70e4f73c06c9fdb6f9
BLAKE2b-256 abdee936ebd45b3200a674e4ec5404c0d2d87b9130bb9ac5cc286fd778e0bb29

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 472f4649e55ceb2ce34b69243458158cd4d1235d44370fb3cf9e47125119ea98
MD5 0d548cf2b73c8407447f2c0028300047
BLAKE2b-256 0383a63ddbb448390a0d6c634cd1bd1cf5aa25c88959016dccd3f69ba3123f9a

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 86aa4f6a0f3b70d0183f8fb9890a2ded18e37ef76103c6951eb41e5c3a5bca14
MD5 96815ffcf8d92c463d6765884d3d8ba9
BLAKE2b-256 145fc034d13f81d1c7c943e7a1e251413297b619fae15f9ae5a4b1a73c884dc8

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp36-cp36m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d9fe5a9eb41bbcd9101fe9f719ddd5104281c5593ffac8e17064b1254988073a
MD5 d0a302041b02e8d3b15e4da38ab1804e
BLAKE2b-256 7e34fba49e6d0dbec6fabc5a0ff77af99f45eed9fc13255e72c2d6e0773684f3

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 54d63e3e1e9b63098e109d0e3ee7bfaeddb71bbe8b58a60ff7a489981e1592f8
MD5 2844f11991fd514b5c60b861b83c80e8
BLAKE2b-256 e8216534105b857e7eb772e0fbe54fef9eda510ecd034ae801b83a0115a42b5d

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 29c72be71711ace1dc15edc7876c17d09e45ecb99b92bf87202323e83689696a
MD5 f6e32bc220ca4938070597eb1e257cf8
BLAKE2b-256 f4159d20b02fd902017b5f5d012e61fd8eeb65bb41bd4d42d77f06b650242ec8

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1151eda365c3d099c1b821eef863878aacd298bd4402f3a17458691df8efd7de
MD5 cda286deb83ac36fef817ee1f56ebe2c
BLAKE2b-256 a933e3b8a8d84bcca70c93f5ea68804db7d39906067e84d84f443c861e0d3e34

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 0584546829986e00e6a93b75a254725a1370060f8bbf7ea206a27d7f4271e3c1
MD5 c4c71299df0f84f5942a271a770f7e28
BLAKE2b-256 99ca1fd4abfe8e3db4b30eb93078f671d2f2946c9b432d863ef64ae2016e55ac

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 42a7edddb10c83d48a3b8f55479d04fd3a63a207acaff1500989d7996d66da78
MD5 1285e54ed59b4f55678c609f59f697e8
BLAKE2b-256 2d800db203b03ed456e75b4dac2ada9a206c17088d538f78c301a7d8a872a6bd

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a6d1475566a9ca10e19e84f03be9269c800a94edcd8e2864717d8e0b5063aed7
MD5 a2c2aedcdcc4a35e8d069b0ec5345228
BLAKE2b-256 4096e3a0ff2d910d0478b98c16c8b46483004bf1831d2b7dec3439a0c384263d

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 55e0156ec2b35a0faac3818f59bcbfdb6bf9636bca13f4abc82a38cac22cfb6c
MD5 6380de83a746a6cbdc13f5fed215bf39
BLAKE2b-256 fb634853050b7ff9e4f1e4882e1043f30d4512b2857ac70a1b2934cab8b4cd69

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fcabd306fc340818bccd380cbfb4fcac46193030da5d42e63ab7c4275108ae02
MD5 e7d284273df8a656a1608bcb1537189d
BLAKE2b-256 0921f0fc0b6c40b9bca0ed6b61609d27f79cbae97542bbe49e5574f97cc46ad4

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fd5e2f8f9dbd9410f586cda79f275b1061bc33ab026659ae7fb729c90dab9fbe
MD5 db7774def4d490795efc67c6b5c5e047
BLAKE2b-256 ab8b5763dff91b0d30b98d56efede16e3ff4435b67695b30d808215f2055bc41

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 e4f09a5d3b7fc3f9dce87d065920fa36696dc8d12f8d90f1aaa0b92b9ea86d4b
MD5 a45ffae1417d9cba2e42264b34fef119
BLAKE2b-256 1526e8c15a932dd983347833030cbf4b556a6e1b460c68fc4ac177b683e84f1d

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 c7433457c4bd6544905842241ea269cf89019cbe89e4d2d7c585cdd114a574db
MD5 af101f90a7fc83789f01b70162f11941
BLAKE2b-256 27f221b3fe525c87271db4e4196dc12b964cd9a6b5b6380004beef5c4255d96b

See more details on using hashes here.

File details

Details for the file pandas-0.23.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pandas-0.23.2-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2e1db0db84d1c6b6a71f2f7fef85d0f4f8c0043f634836bca185a9f73b9e1237
MD5 ece67ce289d1d5c6e87b34b3bb48b600
BLAKE2b-256 e125e4b667291048a4f94b790678fcee0a62bb3150ebe4f9402a1e545be5210e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page