Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description



pandas: powerful Python data analysis toolkit

PyPI Latest Release Conda Latest Release DOI Package Status License Azure Build Status Coverage Downloads Gitter Powered by NumFOCUS Code style: black Imports: isort

What is it?

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.

Main Features

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN, NA, or NaT) in floating point as well as non-floating point data
  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
  • Intuitive merging and joining data sets
  • Flexible reshaping and pivoting of data sets
  • Hierarchical labeling of axes (possible to have multiple labels per tick)
  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging

Where to get it

The source code is currently hosted on GitHub at: https://github.com/pandas-dev/pandas

Binary installers for the latest released version are available at the Python Package Index (PyPI) and on Conda.

# conda
conda install pandas
# or PyPI
pip install pandas

Dependencies

See the full installation instructions for minimum supported versions of required, recommended and optional dependencies.

Installation from sources

To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from PyPI:

pip install cython

In the pandas directory (same one where you found this file after cloning the git repo), execute:

python setup.py install

or for installing in development mode:

python -m pip install -e . --no-build-isolation --no-use-pep517

If you have make, you can also use make develop to run the same command.

or alternatively

python setup.py develop

See the full instructions for installing from source.

License

BSD 3

Documentation

The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable

Background

Work on pandas started at AQR (a quantitative hedge fund) in 2008 and has been under active development since then.

Getting Help

For usage questions, the best place to go to is StackOverflow. Further, general questions and discussions can also take place on the pydata mailing list.

Discussion and Development

Most development discussions take place on GitHub in this repo. Further, the pandas-dev mailing list can also be used for specialized discussions or design issues, and a Gitter channel is available for quick development related questions.

Contributing to pandas Open Source Helpers

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. There are a number of issues listed under Docs and good first issue where you could start out.

You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to pandas on CodeTriage.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: Contributor Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-1.4.0rc0.tar.gz (4.9 MB view details)

Uploaded Source

Built Distributions

pandas-1.4.0rc0-cp310-cp310-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pandas-1.4.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pandas-1.4.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pandas-1.4.0rc0-cp310-cp310-macosx_11_0_arm64.whl (10.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pandas-1.4.0rc0-cp310-cp310-macosx_10_9_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pandas-1.4.0rc0-cp310-cp310-macosx_10_9_universal2.whl (17.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.4.0rc0-cp39-cp39-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pandas-1.4.0rc0-cp39-cp39-win32.whl (9.4 MB view details)

Uploaded CPython 3.9 Windows x86

pandas-1.4.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pandas-1.4.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pandas-1.4.0rc0-cp39-cp39-macosx_11_0_arm64.whl (10.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pandas-1.4.0rc0-cp39-cp39-macosx_10_9_x86_64.whl (11.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pandas-1.4.0rc0-cp39-cp39-macosx_10_9_universal2.whl (17.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.4.0rc0-cp38-cp38-win_amd64.whl (10.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pandas-1.4.0rc0-cp38-cp38-win32.whl (9.4 MB view details)

Uploaded CPython 3.8 Windows x86

pandas-1.4.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pandas-1.4.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pandas-1.4.0rc0-cp38-cp38-macosx_11_0_arm64.whl (10.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pandas-1.4.0rc0-cp38-cp38-macosx_10_9_x86_64.whl (11.4 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pandas-1.4.0rc0-cp38-cp38-macosx_10_9_universal2.whl (17.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pandas-1.4.0rc0.tar.gz.

File metadata

  • Download URL: pandas-1.4.0rc0.tar.gz
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0.tar.gz
Algorithm Hash digest
SHA256 c0d453fda0a87d51f5fe65c16a89b64f13a736f4f17c0202cfcff67e6b341a57
MD5 d2a6d70e73656a88fb8b0f867196954d
BLAKE2b-256 29e36bd596d81eaf9f5b35398fdac0c535efadd9bbf8d0f859739badf9f90c63

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 300ebad475f2096ac8492a9ecc32ca63525ecfcbe5dc8b6ab290e15e2b45b092
MD5 36316227611139d02fc24550d898b9b3
BLAKE2b-256 fd1afc6e62f4a2109e1fc1ec9575b532ba461892d7c4e2e4c78970b7f25e6c9b

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.4.0rc0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b0907d656c91b9cbf87fc585e842ac7820bf218d2f0917b5e6fbd7c655b0f3e
MD5 c80b12e4d0f0b4f1ed758581b1ce06db
BLAKE2b-256 6e4050e0bcdd46c7a9aa4ccbc4ff0b5d58829eda155270f1aa90ae7fa955caf8

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.4.0rc0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ea41ec99170fa2018b3a3067936a83a52568ae970bcdc317f82bb64ec59fa90c
MD5 101ae66287b7af22a43a41de0fde89d8
BLAKE2b-256 c3e193d8e23f64cc3a4488bc7e2b6e48586ef894bb0b1e9eaf4cee93ae1bb1a0

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 db0ce40a09ed997e2c66cefd20ef92620a71010474bbe436a10b78bdc6b07fd4
MD5 c465c1042991d49694c974e224c5d8ba
BLAKE2b-256 09dbe30f6d7825f467d2704a694e759957bf5c88499c8c4598a8f90c084b8d56

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02bd4099522892eab97e54afdd30f1841f5464082d2ea8c6a80d98ef906eb971
MD5 b7a411ce73903de989eda2b8806583cf
BLAKE2b-256 556c0a4d8628c854754387ed84af9f09d9ba6e409b2dc172f878e098db50317e

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 17.8 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 93426398cd9ace7e5d695244bc4b512e99837bd16d7b38f02995a4e744f8946a
MD5 d91b312f8143d2a36606dea40b824e56
BLAKE2b-256 dba912a52a543f979bc8c7d62628b0b71154520ab5d423eb13b8bb863e6b84d5

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dad0cad077bed80399ef962ce28b90b29ff27bc784464b17799127f16a67bf77
MD5 40656fa04f79dc89a0c9fc7cb98d2cc7
BLAKE2b-256 7dec490697c9f132bf6313143ca270c152de78f9e280191c091c89823bc3cec4

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2419c4f9b9eaa531c59fd04500188f9f1bf59fef483b0bed044be024fa85fafb
MD5 25c36882ac23929e5c3229383d0e6352
BLAKE2b-256 0472d39ac9fcc05384f77c2347180ed1e1e74ce0095754cc63d192b2628d84a2

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b4c7c8cfd5df891e52d3fdaa5b9b7c3daad76d2affc9eb034fd3499b11815e0
MD5 bc1a759786f867de92a0b9720314b529
BLAKE2b-256 a78f0b0a2bd22bef3926e1ed7881685e9f2dce5ece1ad183b5550fa0542040d0

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6ed78090d232a25dcb421e8c67276401580b349370d42d35dfb6efab4b6c16dc
MD5 2b56d00c7c3093175a23c1c4d6278535
BLAKE2b-256 9c94953471768a2cf29125c02780d0f7fb6c750785af1212e46d41c665bd88a7

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e11e4df8ea21231b6ed2bf3d35648c57d8046bd08840606095faeaceffe219e7
MD5 cf9c133e00789cd0632badc9860e4968
BLAKE2b-256 fda2878315bc378dadbad1d0e54287825ce154cc129a260f4bf3f6f261ac6b41

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e804aefe4b00043818e3df48d3fbc6c9bfb9364b53d5d7b5ec49b8d445002900
MD5 3dd4ff736437f3dabb8ae0714a9fa495
BLAKE2b-256 1fcff3f992dbfa1d6d95c3ab47b03d0958e6ef2ac76ecff1b3d6bcb1e9fabfb3

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 17.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0e1e0638b1b8191f167f020579bceb7e91a1b1d428f309a268de64fd2591ea16
MD5 bd3ddc5ae1aaf506c51175e28767a80e
BLAKE2b-256 0b43e0e5590b5e97eb21d3a600e2adcd2d2d5e7fd0136a8bda21da9b41011c9b

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 10.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 b8befb52ff25e35961fa2e678264514a8eb1ee408b53725ac2f635f100ebf5c7
MD5 12c99737eb9fa2082f953aab21fa9370
BLAKE2b-256 4bf2aa2f5b500a2dece2f0fee0c86ecea7400abc05b208cc1ad4b4622e942770

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 dba9effcd053f882eee5df8b6800a8c2389a365276ecdded3f49f7d906fd56be
MD5 747be14f15f8c85d6d31e4b99d56b476
BLAKE2b-256 6d964c2df9fd5f80b623b2a27ef5fe284f539292f9dfa6b9b43e338a09e58335

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e1a84925710d91fb23e0b459b2aa020cc0e27991507ca83bec2295aebcb65912
MD5 c109d00d9b87df10c31f5b13ec809d46
BLAKE2b-256 cbc00464539e1dbe1c3e4e0d8b8d973964845a9a5259b5a8863caeb9292f753b

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1014df6abaed4cefbfb6e5943f1489f711799bcffd1ac7e8f94dbe8e88430cd
MD5 8e1c2d32d77cad9844d42ea8290d0607
BLAKE2b-256 1fc5f95ee4a3538aca8ca475623160a664ced02fb53053d9d0e0efdecbf68e05

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 209babc61877e798e06b974ef267dce7e947ec03655c41303753090cd60c0829
MD5 48ae557b6835b871cf76665368c6e060
BLAKE2b-256 619424fc882559a3fc4d67944b28c8e00c5230c2669556f3e2030ef2f3e061e4

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 17ebe6df81337c967e5fa63a72569847aafe84a4226bb6d52378c253a104c032
MD5 83c1e3470d1860490b2a81dcdefbfb38
BLAKE2b-256 93b4e4591bc06e61c07800df8a90471364f17bea6f10559e1c89e7b0880e15ae

See more details on using hashes here.

File details

Details for the file pandas-1.4.0rc0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pandas-1.4.0rc0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 17.5 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for pandas-1.4.0rc0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 88e4de96414e759865866f6cd24041136fc75b4a73ec80e92ac5d9a1d6600dfb
MD5 18df554c196e85299823d8b786412517
BLAKE2b-256 027e180ce2b95571b905406d77bc9394cbc29b0160fc8eb24e5fe76decc8907e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page