Skip to main content

Powerful data structures for data analysis, time series, and statistics

Project description



pandas: powerful Python data analysis toolkit

PyPI Latest Release Conda Latest Release DOI Package Status License Coverage Downloads Gitter Powered by NumFOCUS Code style: black Imports: isort

What is it?

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.

Main Features

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN, NA, or NaT) in floating point as well as non-floating point data
  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
  • Intuitive merging and joining data sets
  • Flexible reshaping and pivoting of data sets
  • Hierarchical labeling of axes (possible to have multiple labels per tick)
  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging

Where to get it

The source code is currently hosted on GitHub at: https://github.com/pandas-dev/pandas

Binary installers for the latest released version are available at the Python Package Index (PyPI) and on Conda.

# conda
conda install pandas
# or PyPI
pip install pandas

Dependencies

See the full installation instructions for minimum supported versions of required, recommended and optional dependencies.

Installation from sources

To install pandas from source you need Cython in addition to the normal dependencies above. Cython can be installed from PyPI:

pip install cython

In the pandas directory (same one where you found this file after cloning the git repo), execute:

python setup.py install

or for installing in development mode:

python -m pip install -e . --no-build-isolation --no-use-pep517

If you have make, you can also use make develop to run the same command.

or alternatively

python setup.py develop

See the full instructions for installing from source.

License

BSD 3

Documentation

The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable

Background

Work on pandas started at AQR (a quantitative hedge fund) in 2008 and has been under active development since then.

Getting Help

For usage questions, the best place to go to is StackOverflow. Further, general questions and discussions can also take place on the pydata mailing list.

Discussion and Development

Most development discussions take place on GitHub in this repo. Further, the pandas-dev mailing list can also be used for specialized discussions or design issues, and a Gitter channel is available for quick development related questions.

Contributing to pandas Open Source Helpers

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributing guide.

If you are simply looking to start working with the pandas codebase, navigate to the GitHub "issues" tab and start looking through interesting issues. There are a number of issues listed under Docs and good first issue where you could start out.

You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to subscribe to pandas on CodeTriage.

Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it!

Feel free to ask questions on the mailing list or on Gitter.

As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: Contributor Code of Conduct

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas-1.5.1.tar.gz (5.2 MB view details)

Uploaded Source

Built Distributions

pandas-1.5.1-cp311-cp311-win_amd64.whl (10.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

pandas-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pandas-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pandas-1.5.1-cp311-cp311-macosx_11_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pandas-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl (11.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pandas-1.5.1-cp311-cp311-macosx_10_9_universal2.whl (18.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.5.1-cp310-cp310-win_amd64.whl (10.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pandas-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pandas-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pandas-1.5.1-cp310-cp310-macosx_11_0_arm64.whl (10.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pandas-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pandas-1.5.1-cp310-cp310-macosx_10_9_universal2.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.5.1-cp39-cp39-win_amd64.whl (10.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pandas-1.5.1-cp39-cp39-win32.whl (9.7 MB view details)

Uploaded CPython 3.9 Windows x86

pandas-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pandas-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pandas-1.5.1-cp39-cp39-macosx_11_0_arm64.whl (10.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pandas-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pandas-1.5.1-cp39-cp39-macosx_10_9_universal2.whl (18.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pandas-1.5.1-cp38-cp38-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pandas-1.5.1-cp38-cp38-win32.whl (9.7 MB view details)

Uploaded CPython 3.8 Windows x86

pandas-1.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pandas-1.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pandas-1.5.1-cp38-cp38-macosx_11_0_arm64.whl (10.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pandas-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pandas-1.5.1-cp38-cp38-macosx_10_9_universal2.whl (18.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pandas-1.5.1.tar.gz.

File metadata

  • Download URL: pandas-1.5.1.tar.gz
  • Upload date:
  • Size: 5.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1.tar.gz
Algorithm Hash digest
SHA256 249cec5f2a5b22096440bd85c33106b6102e0672204abd2d5c014106459804ee
MD5 f393a4660f47c80ccf518717427e49d0
BLAKE2b-256 d74ebc3163c2f0b2f0728c398cad15e082efaa27e40fa579a0523e98caf10fdf

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 10.3 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eb7e8cf2cf11a2580088009b43de84cabbf6f5dae94ceb489f28dba01a17cb77
MD5 1a7e09d02caaed72a068f2168955ac44
BLAKE2b-256 86bbc3353704906030210d7d5bec81577715ba3a320ef0ece44cac3b29324b16

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 932d2d7d3cab44cfa275601c982f30c2d874722ef6396bb539e41e4dc4618ed4
MD5 4e93e60e43280470febcdae0a5d4253b
BLAKE2b-256 1ea614bd623f06a05b551cdb51cc2ec8cbe3af8a6928fe0b8b5ffc6b4c5423fa

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c25e5c16ee5c0feb6cf9d982b869eec94a22ddfda9aa2fbed00842cbb697624
MD5 ccbda9a36d1121f65408de2a5fd0312f
BLAKE2b-256 658f78fff6273dbcbb4c30f51125bc72b254b222e73bb68cc0038fc614d8e1b5

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bcf1a82b770b8f8c1e495b19a20d8296f875a796c4fe6e91da5ef107f18c5ecb
MD5 0c31769bb52dde58381f19e0226c8ae3
BLAKE2b-256 5c49dd246e74156757fe3c26e4b97a4a19fe219cab9092d71366f2456f4841f9

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 36aa1f8f680d7584e9b572c3203b20d22d697c31b71189322f16811d4ecfecd3
MD5 c4045df8a2007805c337c6cdea8f5f75
BLAKE2b-256 a4d9f7a26d190a2062f2316ff046dcc64649a027b1959f02de5a8963fc7f7519

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 66a1ad667b56e679e06ba73bb88c7309b3f48a4c279bd3afea29f65a766e9036
MD5 38e0a9ebcda611e460210043f728ff02
BLAKE2b-256 a933f5d9c0eea8dc9c1d3c49524704d95c81ebcc6f5919698ce6875a3f0c4bdd

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 10.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a52419d9ba5906db516109660b114faf791136c94c1a636ed6b29cbfff9187ee
MD5 1905f82c3dcf1f00be419dd3a1e07e1b
BLAKE2b-256 5015ce88c13d182c34e73a9bee8665340bff200b175af39fa160d30e6d37f7aa

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32e3d9f65606b3f6e76555bfd1d0b68d94aff0929d82010b791b6254bf5a4b96
MD5 3548c273e26549c5b23ab5d04c03171d
BLAKE2b-256 e9aa1ba5c0835aa83af896cdb61df439335f39ca59392aff5fd1a06a152a7aae

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d8c709f4700573deb2036d240d140934df7e852520f4a584b2a8d5443b71f54d
MD5 250ace4e9efa4fe792b6496a374a3299
BLAKE2b-256 88cad8f52ce9faa3c48f7c5dd2fd7bfb036263d77eb61b1c616679faa25e5f88

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f340331a3f411910adfb4bbe46c2ed5872d9e473a783d7f14ecf49bc0869c594
MD5 eb75cad8fe3ff7ace0fb6575ceca2e0c
BLAKE2b-256 68497244ad35598bd612a4b68a86030d9ed210ff9a9f9def2e67282cce128512

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b0c970e2215572197b42f1cff58a908d734503ea54b326412c70d4692256391
MD5 6411f2a4426231e2740b8c77e78f45d1
BLAKE2b-256 9704e2f55bb7fea442e27a002df165d05e0fcd4c282a3ca0da9f717f021515e8

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0a78e05ec09731c5b3bd7a9805927ea631fe6f6cb06f0e7c63191a9a778d52b4
MD5 77373eb1cd00b927a821a1553d168435
BLAKE2b-256 8ff10fea6a6ad6e88f603443a0e9f225f0feafeba4ec899f09846ea7ad5c06e7

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6bb391659a747cf4f181a227c3e64b6d197100d53da98dcd766cc158bdd9ec68
MD5 f97174b33317ec1b4b2607325d995438
BLAKE2b-256 6053619c0bcdc45b0a2ac94fc840c67073f8ca3f69344383c7dca0ed20e1ea73

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pandas-1.5.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 05c527c64ee02a47a24031c880ee0ded05af0623163494173204c5b72ddce658
MD5 4c1794dd9bf7603efd946862f0f28cca
BLAKE2b-256 bd91070dda2b8d5c5471f8f19e0ff3063dcb3b604751036afb05a71a4d758743

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b156a971bc451c68c9e1f97567c94fd44155f073e3bceb1b0d195fd98ed12048
MD5 d1e770f98842f21ac4576ae48196a297
BLAKE2b-256 c980207c30c09d0b650214f7826227d32236e3259e2ad2b8e0075b3feae4266c

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5cee0c74e93ed4f9d39007e439debcaadc519d7ea5c0afc3d590a3a7b2edf060
MD5 7f2feae0177fd5e9de122a9ebe408ef5
BLAKE2b-256 93a80174b2f33e3450140bb32a7208aed3b629afb83e92e82a89203e8e35eec7

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04e51b01d5192499390c0015630975f57836cc95c7411415b499b599b05c0c96
MD5 d6aff4649f67151c2ad68e94872cb500
BLAKE2b-256 6efee66020dc13c052be66795794c2590b460dfb87904d7834e2138f36626e74

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e675f8fe9aa6c418dc8d3aac0087b5294c1a4527f1eacf9fe5ea671685285454
MD5 5d8daf0f3850658e6fa7bd3f6c16903c
BLAKE2b-256 1251dd4bd8d43f7f21086b99fed461e91eaf4fdac48dea3028f4b3aef87dffdc

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 927e59c694e039c75d7023465d311277a1fc29ed7236b5746e9dddf180393113
MD5 660ae0e3598a67cca966e1fc1c215abe
BLAKE2b-256 c1a47f0c2c8702e220846bebc4c03ce14122724c4280807fd87638bd641aa128

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pandas-1.5.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 db45b94885000981522fb92349e6b76f5aee0924cc5315881239c7859883117d
MD5 5a03ed557e0083dc1021897984385c3e
BLAKE2b-256 454c431f4ebbe40691ea5a33e37a5698042abacbb7baf4b67ec88fc038f85f94

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: pandas-1.5.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 9.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for pandas-1.5.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ddf46b940ef815af4e542697eaf071f0531449407a7607dd731bf23d156e20a7
MD5 a55550016608075e98b17aa963f3b962
BLAKE2b-256 7c5e66b310f4fa3ef08a20f30a29bff91265f0118f3bd3549e4dea84c801da8d

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 683779e5728ac9138406c59a11e09cd98c7d2c12f0a5fc2b9c5eecdbb4a00075
MD5 92e9fc20f90c2a0f3d43f011eded9ae5
BLAKE2b-256 37b4f9d5339c96449af3321a923e239cc00e08e69f0ca1c1544654028da950e4

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 669c8605dba6c798c1863157aefde959c1796671ffb342b80fcb80a4c0bc4c26
MD5 bb90c2337e205beb284240aa4283fe08
BLAKE2b-256 a928bb976b8173a957e5ff2ab9e61373f47e2fa7e31a864ca63f2c5d6894f2f2

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17da7035d9e6f9ea9cdc3a513161f8739b8f8489d31dc932bc5a29a27243f93d
MD5 166f69fc7b8ee9bb2a1e6a32e76e84ef
BLAKE2b-256 1c7549a1118aee0b5e95c2c52f57f48a340ab9cb0b7b30a3c986e20cdc41f4d2

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 81f0674fa50b38b6793cd84fae5d67f58f74c2d974d2cb4e476d26eee33343d0
MD5 b0d357955ee965ec2e640b45b8c24168
BLAKE2b-256 930be012ba87937e72d5a7410bbe2b87202f95135ed2b51600a6f9693c582acb

See more details on using hashes here.

File details

Details for the file pandas-1.5.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pandas-1.5.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cb2a9cf1150302d69bb99861c5cddc9c25aceacb0a4ef5299785d0f5389a3209
MD5 168ce97ef68322d36121e7d5b9d4523b
BLAKE2b-256 2aaaa08e03b2af7a669aefc3dd5fe6d6eac79d854cd985670c8f367bfc0cd976

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page