Skip to main content

Simple reference manager in Python

Project description

PyPI version GitHub license

Papers

Simple reference manager in Python. Uses folders instead of a database, storing bibliographic information in bibtex. Generates a website to browse papers.

Demo

Website generated from bibliography stored in demo/:

Screenshot

Installation

$ pip install papers

In addition, ImageMagick needs to be installed in order to generate PDF previews. Note that you may need to grant special permissions for ImageMagick to read PDF files on Linux.

Usage

Import papers from arXiv using an identifier, or import PDFs using URLs:

$ papers-import --path ~/Papers arxiv ID
$ papers-import --path ~/Papers pdf URL --title ...

See papers-import --help for full list of options.

The bibliography can be exported to a single bib-file, or a website containing the full index:

$ papers-export --path ~/Papers bib
$ papers-export --path ~/Papers web

See papers-export --help for full list of options.

Credits

Previews inspired by Andrej Karpathy's Arxiv Sanity Preserver.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

papers-0.1.5.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

papers-0.1.5-py2.py3-none-any.whl (14.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file papers-0.1.5.tar.gz.

File metadata

  • Download URL: papers-0.1.5.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200616 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for papers-0.1.5.tar.gz
Algorithm Hash digest
SHA256 7c1ddcec8b2349fdba2103b20f4bddb762f57cf30a427b8ae6773737f06b09c6
MD5 9ea3c47e95c0ec9e6d75e709095c30ba
BLAKE2b-256 5aa382b15fc7eabef2bf9b63cb3774b0ef32878ec0b3839dfc428f65bfa79933

See more details on using hashes here.

File details

Details for the file papers-0.1.5-py2.py3-none-any.whl.

File metadata

  • Download URL: papers-0.1.5-py2.py3-none-any.whl
  • Upload date:
  • Size: 14.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.3.1.post20200616 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.7

File hashes

Hashes for papers-0.1.5-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 26edcd8f6b3a87fd1cefb0fb8be4c88e76d1d8276841ed35763f1fcefb49ab96
MD5 3d48db18faf9761e0edd33b4d60212b8
BLAKE2b-256 a85b2b082380a4e3fd0e815a091a048a756d8ef53083821d2511883ba0a988d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page