Point cloud data processing
Project description
================================================================================
PDAL
================================================================================
The PDAL Python extension allows you to process data with PDAL into `Numpy`_
arrays. Additionally, you can use it to fetch `schema`_ and `metadata`_ from
PDAL operations.
Usage
--------------------------------------------------------------------------------
Given the following pipeline, which simply reads an `ASPRS LAS`_ file and
sorts it by the ``X`` dimension:
.. code-block:: python
json = """
{
"pipeline": [
"1.2-with-color.las",
{
"type": "filters.sort",
"dimension": "X"
}
]
}"""
import pdal
pipeline = pdal.Pipeline(pipeline)
pipeline.validate() # check if our JSON and options were good
pipeline.loglevel = 9 #really noisy
count = pipeline.execute()
arrays = pipeline.arrays
metadata = pipeline.metadata
log = pipeline.log
.. _`Numpy`: http://www.numpy.org/
.. _`schema`: http://www.pdal.io/dimensions.html
.. _`metadata`: http://www.pdal.io/development/metadata.html
Requirements
================================================================================
* PDAL 1.4+
* Python >=2.7 (including Python 3.x)
Changes
================================================================================
PDAL
================================================================================
The PDAL Python extension allows you to process data with PDAL into `Numpy`_
arrays. Additionally, you can use it to fetch `schema`_ and `metadata`_ from
PDAL operations.
Usage
--------------------------------------------------------------------------------
Given the following pipeline, which simply reads an `ASPRS LAS`_ file and
sorts it by the ``X`` dimension:
.. code-block:: python
json = """
{
"pipeline": [
"1.2-with-color.las",
{
"type": "filters.sort",
"dimension": "X"
}
]
}"""
import pdal
pipeline = pdal.Pipeline(pipeline)
pipeline.validate() # check if our JSON and options were good
pipeline.loglevel = 9 #really noisy
count = pipeline.execute()
arrays = pipeline.arrays
metadata = pipeline.metadata
log = pipeline.log
.. _`Numpy`: http://www.numpy.org/
.. _`schema`: http://www.pdal.io/dimensions.html
.. _`metadata`: http://www.pdal.io/development/metadata.html
Requirements
================================================================================
* PDAL 1.4+
* Python >=2.7 (including Python 3.x)
Changes
================================================================================
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PDAL-1.4.0.tar.gz
(49.4 kB
view details)
File details
Details for the file PDAL-1.4.0.tar.gz
.
File metadata
- Download URL: PDAL-1.4.0.tar.gz
- Upload date:
- Size: 49.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 523c3b108ebdf5177dba9e3cc05c0c1507ab1fb9cdc8e7743c06c03a2a18ac12 |
|
MD5 | 91ad342fb124edeae369ba90a1dfd11a |
|
BLAKE2b-256 | 958e74e72f573b37d7f4653d7a82e2d1a66e4a5a9dc17f3489140ceb74245f47 |