Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations:
    • Convolution
    • Compressor
    • Chorus
    • Distortion
    • Gain
    • HighpassFilter
    • LadderFilter
    • Limiter
    • LowpassFilter
    • Phaser
    • Reverb
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

A very basic example of how to use pedalboard's built-in plugins:

import soundfile as sf
from pedalboard import (
    Pedalboard,
    Convolution,
    Compressor,
    Chorus,
    Gain,
    Reverb,
    Limiter,
    LadderFilter,
    Phaser,
)

audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
], sample_rate=sample_rate)

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# Run the audio through this pedalboard!
effected = board(audio)

# Write the audio back as a wav file:
with sf.SoundFile('./processed-output-stereo.wav', 'w', samplerate=sample_rate, channels=len(effected.shape)) as f:
    f.write(effected)

Loading a VST3® plugin and manipulating its parameters

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 package from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz',
#   'input_lvl_db',
#   'sensitivity_db',
#   'ratio',
#   'attack_ms',
#   'release_ms',
#   'makeup_db',
#   'mix',
#   'output_lvl_db',
#   'sc_active',
#   'full_bandwidth',
#   'bypass',
#   'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate=sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()], sample_rate=sample_rate)
# ...and run that pedalboard with the same VST instance!
effected = board(audio)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021 Spotify AB.

pedalboard is licensed under the GNU General Public License v3, because:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.3.10-pp38-pypy38_pp73-win_amd64.whl (2.4 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.10-pp37-pypy37_pp73-win_amd64.whl (2.4 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.10-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-cp310-cp310-macosx_10_9_universal2.whl (6.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.10-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-cp39-cp39-macosx_10_9_universal2.whl (6.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.10-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-cp38-cp38-macosx_10_9_universal2.whl (6.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.10-cp37-cp37m-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.3.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.3.10-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.3.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.10-cp36-cp36m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.3.10-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 cc559e542f289e8536b6affc3c2cb78a46e6c9ad8dfa4846f92a280b44f53dc1
MD5 4675ce3e11f665182c78a09fea5d7c0b
BLAKE2b-256 616c1fdadcc4829a7289fc72979753f8983830d5669630b0c04f405fd46826ed

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 680d9bb496e66f0a2e6df7a87c1bf320363699681b04d572dc7471abcd867320
MD5 76b2c84fcbf0f10a79c28f5fabfc98f0
BLAKE2b-256 2ff3aae344e9687a58ef37f4e6bd398972774cdb3870d915480f0ab292a81712

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9758b3ec5132714e288dfb18e1787b17ea579b89f4f785ea60d03c86fafa99f5
MD5 3278a176aa4df75b50d04f0b6655fc93
BLAKE2b-256 f377f4242dc3bba156e593f43d8f27d2d479a52f96190b8e1c00d5ab1241d4ac

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 623c641f7cfd2b856177425603c79995da6cf98a191559afbfe0b8160c91564c
MD5 e12f6fd6d7cbb63602958d6c6acfa023
BLAKE2b-256 4874a779076f2501f0cd69032cda0030106af046ac1de48cc47b509e995d84a5

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7c1ef140a5093de63a30cd168496b3945b8c5a647611f70d3b4036cfeaae4fd7
MD5 eceaff049508268d384325df251b3293
BLAKE2b-256 91330c5e730b9aba0da7318f94b88694c5fcc17892edf7b5a8bee6c7a45f51af

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 375499c345f372c33e6cb48781e7e957f7112ab11477747949a4e3a89e687af1
MD5 9f1c91dfcf507e239932f062965d755f
BLAKE2b-256 3303379a0b747f4be4c14b727fec313a7f90533453adc233119e2d35d2960298

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fcfe2d76d5785741cfe6a63631270a37a3a268492eaa3d06b41e8a455091a9da
MD5 bc06a9224ac498755a98eb1bf71fb22b
BLAKE2b-256 6bb9240d5ac1a145f566235d6deef6c18ec1475d3936ef4d2c20babf3f4ef5fe

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d81b31b743771b9ac6773e22277a27151e831a51fc53f26a9e717d8fcae4bfc
MD5 c761b4bb7b4ea8d14e4c05e9b17545e0
BLAKE2b-256 275861f4edce89407751bbce3e7309d852a9033deff3f80ac20236ea40a3f147

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ce0ef2f070d0115e23f6935c55a0bb8ba4d760031afb871db0e6663b3d7970b5
MD5 181efed66b5d46eb7e80a7267e226004
BLAKE2b-256 c4750104130ecb879b3faddf9f2cc169ffe6ce227165e01019466977ad371318

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b5ce3820f2174a77a523af7adac3741bc87d439bc1a7250c8843ac4dcaac723
MD5 f80f83f04e2891bac9f910ee3204c399
BLAKE2b-256 1f5a3c06db40790971a07ad7f00091c0eeb3aa4be461534d4becc0e820bb593c

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0d7472419ee10007669eb8396c973dcb67438c37939cf0edfb15c917c04e941
MD5 d9b5af841d1a3cb666f520c94f502672
BLAKE2b-256 baa9352345c5470484b3ccf215047ae08ea6d9426381043040f3260440b14532

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d04283678df13b5a4002b4fb21a31260b0aefef90bb20f202c123ede41379b44
MD5 a387d0d96e1287c158839fcd1d56e93d
BLAKE2b-256 1550e5ebb151d3496c0552465e10c8a70447b42eae35b12792c1e206d363d9a5

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c707530950cb40407d8d2486366d529192817c65c21bf31218a28563ab323713
MD5 d926c37c0283f7a730b9bb5aa876b633
BLAKE2b-256 55b3eb02b0f91cdd81fbdce6d966c8f744c5129cf5b345d07db6b59a93798976

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cfca33e1d6113fbcae6df709926fce2ab7b93607f02ea6d7247b54336645949
MD5 7db7ead17beb6ba8691ad42858ddd16d
BLAKE2b-256 d7566151329389ae30921dff4e4839e7b493eab2224bbbbefe8519ec6408c747

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 66c4903b1da4534264f46b8afafc9cf33d81f3242318400aee2536fefbe77338
MD5 85bafb5fff660ad7be55d32dd28483db
BLAKE2b-256 83d623856f2905c1c6d0916cd23a02e2adff802856d5b8d62ce422346ed81977

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 11aed3f498aa2f685e54e895778496cddf8868ab3b08fb8facdb258d050b0be7
MD5 871a1276a4cf36d86dfc522674584405
BLAKE2b-256 5adacd54a08745bcf4c4617e1d0361d69c7f3bb24c04f38a51592097c77ca2ef

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 319966292e0a119c6ecea39a15854f235383a10790deb6ef4c1a0e2b6b91e0bd
MD5 4b49bee63ab25c21f88c5fea9e270d01
BLAKE2b-256 9b661c5fff5295221f00d9a32e4486e813438355ab38cdd73df134d28bbdff28

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc4fbded18d5a4a06806290e4049862d2e75971ebe19e9320682230cab2419ca
MD5 e8e294aa1de301a1d784360c4e964a86
BLAKE2b-256 8f30b3ecb1421f9abae759694b99ba6d5d3aed29666d869de898e6828c89f7a7

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc5f5e7db06554279bfd2a016a426f97a6b440f724b4f2338a976df9adbe060c
MD5 1036f339f12acf18a47fe75583be495e
BLAKE2b-256 4b2097bc36c3c891f713d0d84b658115c04367debf9593f7b13e66c87307c5b5

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a34ec69683578713f5bd6255a5c60c9e16aa14f67c0125bc613f92c8222eeae2
MD5 7200ed559d0714efca445b43f9e2a667
BLAKE2b-256 bf46860556b4b39504f2ce1e9def5d1b91a7e8a8d2a9d684fe15bfa07fdf190f

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7105c194d8eee4a1c6170379cd3415347c92fa1cbafef7dc0e3f3274d9476160
MD5 989949d3ed5aebed61a0ac2c1f27c2cb
BLAKE2b-256 423bf827da9c0ac78b5968eea6b6edc0bdf6d4a081016484fd15651fc589e7a5

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fe57d4d20da9747bf96265336f32cce09a564f958dc93858f8b9be480f65d3c9
MD5 1aa401c151225bdaf179659f33ee5cf0
BLAKE2b-256 b0e4478cfdeb457f0b61f65f4eec12a8aecfb98d3e518b3dae7fe563c4f4e7c4

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db8e0fe7ae182b4a5e0919255c2be2dafa681e6c6d448886ce8003d274c8701f
MD5 6fbb1dd8d1007b198fa4310ab38398a5
BLAKE2b-256 bffcbf533ce85b03e6255b19b8abec44ea43100edde1b6e630e0e8b352d1c24f

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1868bf247d6976bf63a5b64052e7ecc71b4c85f8d8e3a2887a777188c542e9a6
MD5 676aab844883db4a4936700bbc241fab
BLAKE2b-256 9191128ba909a34e5a3b353937054b633865227179795a14178bea6990a6fc0a

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 555834e9c03aced9672083b15070467ab3a406b7a82efdf1a5fde1cf2e370d2f
MD5 5295dec5b2c1a185a48539ca639077a5
BLAKE2b-256 20eb48aacbffb4915d7e9a6852fcd142c842cafa8e4c2e91d8d4834fe0ec7948

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a855173af4632f9c685e7b40e6db47515817c446b1da6222c95ffba825d2f772
MD5 e68c8e53d4265a6d8f0490256c495b38
BLAKE2b-256 724b04556cc0252e0f2f8a4e93abed746e55caecfff4434a0e2a6b482ad45928

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.10-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4bfe06379b049a3168f751c6169af48745a2fe09c7d3b6f7042596a7bb34ed81
MD5 939cb6b40619f3c42825517f917cafd7
BLAKE2b-256 0f97df444eff4b1bce0ab7cb9eeeea5f7bc6ec7a74aaf0a38987879c31d77a9e

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.10-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.10-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.10-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b25a63831d147a187e22b64fcf7e72d894d19c177a4b9d719725ca298757cb35
MD5 69b0762666d091158c7d4edec9aff408
BLAKE2b-256 8230712ddb3fb4a28b4a059088cb84a693237dd67dd46facdb7dc7e18aadc353

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page