Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations:
    • Convolution
    • Compressor
    • Chorus
    • Distortion
    • Gain
    • HighpassFilter
    • LadderFilter
    • Limiter
    • LowpassFilter
    • Phaser
    • Reverb
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

A very basic example of how to use pedalboard's built-in plugins:

import soundfile as sf
from pedalboard import (
    Pedalboard,
    Convolution,
    Compressor,
    Chorus,
    Gain,
    Reverb,
    Limiter,
    LadderFilter,
    Phaser,
)

audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
], sample_rate=sample_rate)

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# Run the audio through this pedalboard!
effected = board(audio)

# Write the audio back as a wav file:
with sf.SoundFile('./processed-output-stereo.wav', 'w', samplerate=sample_rate, channels=len(effected.shape)) as f:
    f.write(effected)

Loading a VST3® plugin and manipulating its parameters

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 package from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz',
#   'input_lvl_db',
#   'sensitivity_db',
#   'ratio',
#   'attack_ms',
#   'release_ms',
#   'makeup_db',
#   'mix',
#   'output_lvl_db',
#   'sc_active',
#   'full_bandwidth',
#   'bypass',
#   'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate=sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()], sample_rate=sample_rate)
# ...and run that pedalboard with the same VST instance!
effected = board(audio)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021 Spotify AB.

pedalboard is licensed under the GNU General Public License v3, because:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.3.11-pp38-pypy38_pp73-win_amd64.whl (2.5 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.11-pp37-pypy37_pp73-win_amd64.whl (2.5 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.11-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.11-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-cp310-cp310-macosx_10_9_universal2.whl (6.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.11-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-cp39-cp39-macosx_10_9_universal2.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.11-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-cp38-cp38-macosx_10_9_universal2.whl (6.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.11-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.3.11-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.11-cp36-cp36m-macosx_10_9_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.3.11-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f4a110effa2ab498b06c8f446a6ab12e5d0a2d7f7f32591ef81fe63c16c6d691
MD5 c361c1bc3dbf703178194c0a97516fec
BLAKE2b-256 77dfa62945264733e360690432614b3f1230e504f2dc11e716dbaa416d866153

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 409586046741df626e3e24266dc939feb2bf20a92bf6def5a2f2dbf7c44e98ad
MD5 07917fd44852047172b3ca6d740f3a30
BLAKE2b-256 adbea105e0f22ee2b3fb4ec38b4528120b52e0de2590f4e01174d63e72f3470d

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1935aadeffee8cd269d068c8f788218262aef7206928f2312644d2248ef097b
MD5 05f772636f308ae2e61b62970a894a87
BLAKE2b-256 18d6dab8b5b286a72c4ec189f7104745a0f63655171e07625b8406d649d172fd

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3d7691807559afd8b4af097fe166de62c06edc4aeab4ca355a1aecf1693250ac
MD5 33d559e8424cef64dbe2e94cb08364e6
BLAKE2b-256 379525e43720c5c895f1e1671a5e830c92f1a61942e232da06a83e2d70050ce0

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 39efa1ea593d315b46c5f4ad6c2acd6ac2743089f3c57eb5cee7ecec33908538
MD5 d095c716f10e36f61cbdaa9f97180ed2
BLAKE2b-256 29bb7082f40493b51d721dcf8fb680e5dc98b2dbccb26ad7f27dbfc93b016412

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80cef52e131c92f6fbd39e7714c3ec2c7f12929722997bb700304967eb9d34f3
MD5 48d554a4b8e0c74a40ff8ddbbcbe3c80
BLAKE2b-256 3f40d4e9b6e10ab4f3404a1223beb5234c2d079591edc3e7e23e644a0f09951a

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f625045cad19251413f71a5bb77b58a8b597699a3774c783ad9077f94c1c34d2
MD5 c1fa063c24014a6992616d5eeb579b60
BLAKE2b-256 174ea9e6091a4e00d05112a17c03dbf5629197279014e80e7c4ae6e037086216

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f6a76a2516fc5909f5ecf7037ed077df1b3451bc1361a9de36b3aedc3d5896d
MD5 1a96fb4329a99125abd92971a2ce08e6
BLAKE2b-256 2920604825cedd29b1d2560d1a2128030d3ee3bd51b3a0d2436e075905c4adb1

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8857ff911777288b295d3fa64f8e778c611c42a71d6c27ae734b8fc64ad18e9a
MD5 558958902dc40007e4db110e098ba6ad
BLAKE2b-256 0e361ca0c6c24507b1c87a603b18b84c5fd7a63c5d2a45dc3421e689feac0e45

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55c804efcbbd5347ce65767bfd80e1003cf502b5bd1fd0ca6901311b9a8e0758
MD5 0239535982aaf546ac808c5d42b1d2d8
BLAKE2b-256 331bb9354acd54d1ada73c6ad85bca8171e68bd1ac550680180a07665234f5ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0f620022b26bb16ad103ff80137643e7f564c3d8ccee40f6bf238be86109e44d
MD5 075f752de020c84900d4f4f09df9ce3a
BLAKE2b-256 1d7a3d3a78b199e72464befa84abd78a9ffd3d98d03b948b1692dcb7ff65ab76

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 11a3912ba9f49c94cfe47bf8c6b1e241c87c0b0c447810aa1cc902af59589b99
MD5 f9a0de97f2a9acb5ad7d6760680ccc7d
BLAKE2b-256 14a1ed3ea178ba42aabf745b59b335e11cc1d974086bd3bc67188c7e290074ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0a0ad20746dd84b314381bd223ef802860f77762984394d86aea1b2eb4ae00f3
MD5 48d11e1f5594b5d5e83fb46b1c043208
BLAKE2b-256 4276e12b69f2b6ca2ba06481b89eb10fd75024466ffb6046e8924148d8da3aec

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fde3beba72296aaa1177b04009a3d8046cce700f2ade175e53b95698262d98a5
MD5 b0e345362f4f807eb241a3389d4c21dc
BLAKE2b-256 2ab911eae8111c69d41e82ff358d8dfa55c5a5d91fd9bd5861696d10ec18de46

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99e0c4d6b1024ef276bb454c399139ba79acf1b27af8201327c0682947ec48c5
MD5 15147dffd7ecedb4b2240a36ec58a5bc
BLAKE2b-256 cab754a2c899b8fe6f93f03693c63b7588666ae5e4f78903be91abf2f1724a75

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fbf0ef6c9cc347613e7052cf723402b7166e2ecdf3fe0be06f077d22dc6d9523
MD5 26c6efa8ebc8504f44c12111dcdee606
BLAKE2b-256 0d4c7872d9bb1f4bf28a20a95d45e7363d36de9a0459763eae60d33d76bd40eb

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ab9d37399fbb1a0a128e112993f044fbae993cc18bb4d221e60da803714913ff
MD5 8e98f62086933580cdca1d1671ca5f10
BLAKE2b-256 4381e1290e1d51504d0050d54cad7bbfe92e1a72b28d33e536f29ebc3ccdefbe

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f36db55efeb5e5df385c9215368f1f1279ed12c3d1941cc2aa6ec51658ef277
MD5 09f5bc92a7ef07032125a847b66f7592
BLAKE2b-256 45caf28b2125ccf4c66543806628ce75546d642f7885b830ca7cdb817bc32387

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36cc30bfb9f849b9b78802652df5e97d0e323029fb98b4cc53cc7d04f2aeec3d
MD5 714a3732d698962f6f378e31bf61c0c7
BLAKE2b-256 e1805b6b6c4080e68e4740fdda4fd074e6b99e426c3abe0aa6fdb30c10f60ded

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b30aca2069bfa115249936a3a186ba26c03b3af802c94148bbc1c2688b486ea7
MD5 797783060f46cb699f0ef484fc43361b
BLAKE2b-256 0724c56d4d94d59300763ddb801b623d1048674454de693f999643fbb9ea0db6

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 63a319489a30507cfc582e2519cfbc7fb496276d93531d62cd0dac13a970d6a8
MD5 8d9fe1b9bfa4e0b9bd213ea448970afc
BLAKE2b-256 c84ef6f393b104d7bab2c649b66328ce8d727674f0234e8aa33cf8b0ab49f095

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7101049e6f7f004cc7981d009055429cc14c44fffde00c98857b0a20f2112065
MD5 62cda5c4969c117b0ac5c6655d559ee0
BLAKE2b-256 44795afe72c9f6cff7b7171d7f52547e8bdd9beb48b48cedde4986db1351c14e

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18d56395e80a0b9fe5f90e5cb6ad2260273bd73b0193d0edbae442050a7973b6
MD5 3eb03836b074ab47bcf7c148471db9dd
BLAKE2b-256 f6e633b5b63605040324f11c477762e36c05d0edfaeb2c0dc1ae78c6069736e3

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9d02b83efe46cf69d0fa267fc9ad0d1279e960ad024eec28b3a6d677df9f2ed4
MD5 36868dd40a24d21260127fa0632f50d3
BLAKE2b-256 2ba9df2df2048af037c4c778fe4165c4e32c1a8ef1197673c3f4971fb40e8889

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 8574a3e984bae3d9cea800e20e61a808ce6684f9092a99509266a06c81d38588
MD5 47fe0bae1a3876ab990442b520468b65
BLAKE2b-256 a2420ebd2fd927d3502c57f5af35f953df5520aa62466ec5d56c4798f0ee1cdb

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e997f7aeb705155d809fdcdccdf382112e0de9872b65242035fb00a1ddcca439
MD5 2d025c674414b2184fdee6c47d280f0c
BLAKE2b-256 8e0428465fe1be5f1331704ccf80229a11ea8860319e933de77f4f76fa9318d4

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.11-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd11d73444caacebfef6138150df0964fe0cc4cd0d2aff4272375d1a00b3888d
MD5 85b9964af9e1ce24de5c5a168933aa1d
BLAKE2b-256 66f16832adfaeeb59f4f9e0e2a561b58cb2f9da546a9ca87dba46da74d48c062

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.11-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.11-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.11-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e7f64fa3f1f8f130da5bbf6a3f5de0df3fcc50b967f547f076e4864c9023e5f
MD5 9a2d87333f50b66086641b9327d98001
BLAKE2b-256 fc133ac83d18c67c902bc96d10a7384453f6ac2d693698b4d362947c7d6bd6bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page