Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations:
    • Convolution
    • Compressor
    • Chorus
    • Distortion
    • Gain
    • HighpassFilter
    • LadderFilter
    • Limiter
    • LowpassFilter
    • Phaser
    • PitchShift (provided by Chris Cannam's Rubber Band Library)
    • Reverb
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

A very basic example of how to use pedalboard's built-in plugins:

import soundfile as sf
from pedalboard import (
    Pedalboard,
    Convolution,
    Compressor,
    Chorus,
    Gain,
    Reverb,
    Limiter,
    LadderFilter,
    Phaser,
)

audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
], sample_rate=sample_rate)

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# Run the audio through this pedalboard!
effected = board(audio)

# Write the audio back as a wav file:
with sf.SoundFile('./processed-output-stereo.wav', 'w', samplerate=sample_rate, channels=len(effected.shape)) as f:
    f.write(effected)

Loading a VST3® plugin and manipulating its parameters

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 package from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz',
#   'input_lvl_db',
#   'sensitivity_db',
#   'ratio',
#   'attack_ms',
#   'release_ms',
#   'makeup_db',
#   'mix',
#   'output_lvl_db',
#   'sc_active',
#   'full_bandwidth',
#   'bypass',
#   'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate=sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()], sample_rate=sample_rate)
# ...and run that pedalboard with the same VST instance!
effected = board(audio)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.3.14-pp38-pypy38_pp73-win_amd64.whl (2.6 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.14-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.14-pp37-pypy37_pp73-win_amd64.whl (2.6 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.14-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.14-cp310-cp310-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-cp310-cp310-macosx_10_9_universal2.whl (6.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.14-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-cp39-cp39-macosx_10_9_universal2.whl (6.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.14-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-cp38-cp38-macosx_10_9_universal2.whl (6.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.14-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.3.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.3.14-cp36-cp36m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.3.14-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.14-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.14-cp36-cp36m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.3.14-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b82c97bf9336568ca20541f68848230f1a6e7f97b94339c4688c70ef36ceb2ab
MD5 9ee87e8d67d373d0f81c85ea812543b3
BLAKE2b-256 685ce0b8110e19db5f71edaa03791486430071fc3d47f4bab189f48a6fa55c2e

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68f24ec42d209587adb1c8352767c421f9cd79d735bca206a1b57659542e1f14
MD5 b08e8855699811daed992f4658fa1685
BLAKE2b-256 a3cf54001a03e3dee11e52e6747925b66020ca94a8c6b37a568e743e0742bed9

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 93d01655841ef8af62d8cf70bb5cbfed293ca70c8afc08594dcf7e4163fe8834
MD5 7fc7b4f4ff800c77ebab622c1585ffcf
BLAKE2b-256 e0f2ea86ae4e94b85b77763e23abfbb93de8d4c2de55834c017221c7ab1d0838

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7a1fbadf3223a2ff5358d7e25d586252f86da700f243bf6dd1b622a5ad74f86
MD5 c2cf1031afed003c90084d89f09333fb
BLAKE2b-256 6fbe0c0210c9254a0458f235fedd6107cc1f97f775cc23e091775363995d97be

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 67219914807ef3b517859483fb2486b1500decfb8faf34d585d372f8bdb68ee3
MD5 93df23367e85b3bd9b51904fe192bbf0
BLAKE2b-256 7e0da58156e86d04c0ac8a55cbcf5dd2fea057ac86683f44f27dda7659561e75

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ee368a3cacb0e785dce73e97fbc3caf82da2399cbd3775b67ac819434c85eba
MD5 5d3d113326841777554fd07d1b3b9c3c
BLAKE2b-256 0dae3c353db28841c17d73604d41433f770550c7a896f88525c20629d88df822

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 30459ab34035fdbfe0529c7ff3690f0f298474330e6dc7ab20c2306a807a02e5
MD5 b6723dbda150ba9560f9f09978eaef12
BLAKE2b-256 5719cd5789e99ce9392ed056612c40c776183d98fcea04af86ef48af654e4e37

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af6c4028e2c7c00ae5346633534028a564f9a5a0f8867847b0b3a2c681639d98
MD5 313cf8535c419f4a607c29ed5e8f845c
BLAKE2b-256 8e5cb81648775b77cce7b88d10d5d63c6f0d722f5d667e8d74f37151a22d0e85

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 476dc3872d48818e81d87116523231b8ef4d767bf0493a86d37e4f7cd39e886f
MD5 1e4c5e59e33244f51a2c3c2d51c1c284
BLAKE2b-256 6a1c041742f1f0eec8b7b76e437533054ef8c57db06efac364325d17b59801b1

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d11b59aaf66809cc794df169d70ccce1b052a0d11079fbc06a08925886e85b46
MD5 a98464e45aaded87e43291e593b27dc2
BLAKE2b-256 42fb9e932984052d9d9bcebd97256e96861e3a26c252eb057c2de821630b0b13

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc5c8176031615f85d593a2335c4cab4de71ea8429420d1055a1b400bebadf86
MD5 819f4729d4a4b564fbbaba482e6d018e
BLAKE2b-256 716683f84538992f84683c6e60c118b761bab0a3580c2849f8d9bc3fa7d95ec9

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0ba831168d969df44cd8339adcd84db9bf73c98ff1aade80bf824c9200707f6c
MD5 8be47768944755821ac3b52ff097d782
BLAKE2b-256 b991584df2b471f56a0a4996648b860a27949b3eb5e2f175aab9ae684da1d456

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 067864d6ce1dcd49c67c29f14e54e38a9a09b3f85dcd7fa446973545847d20b3
MD5 ff1a3f01b5fd9d708b03f51050e29409
BLAKE2b-256 e2dc529514cb9201de4bf9063cc80c615e3c531dc38da9b530699a3f6cddeb69

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b205f556d5b12921b5b8f094e2eeaf455c696371bab8ccf7370772ead9158d41
MD5 a2cdc4c5115a6444088bb9a4b772956e
BLAKE2b-256 b5207375af894227720c3c95537003e2cbeca0f3ba1a6154e7b88364c1882f9d

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e16456a9280cca8780a5cac9b3237c1240f9f90ef0ef6339533f902e77332b7b
MD5 74f6a8c94f4777bba6a6de5986d75b75
BLAKE2b-256 cba6cf33944491323b4ed8719508fdd1d77c1d8a4f8dccc855cbf62c4f6fb0fe

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cf3800f7c47a47f5ffc6dea4c175b40539d20dc21d791dca46d2159e304a9153
MD5 501d09718b90f1c628e2c846a4050eb9
BLAKE2b-256 04ae1237f7d0c6aa1aaae7e8db67ffc02e2f80f6d45cb8d6416d7e825fd4506e

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d41125b4a80acb6f8ac57bc7c586598a48c3c5ff2218f6481405646da01be40d
MD5 8b43ba6f6aab90eb29be3a8302b79799
BLAKE2b-256 a226f6d6eee3b04ae4a72a21eb951eaa9cc2a336b14976ae6882694ce774bdba

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dd611072ace64ef186b8363aa88964285adfee25a013b884bcd62125552ae40
MD5 4d8f973a23e3f395c37665cee28206b5
BLAKE2b-256 13b562c1d691eac6377bba3752427f8c6f095cf6e17cf9148057c9b8937295e7

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2d2f2e18f3835f8a4f19283efb2da100137594d4f78658a922009890b3e20941
MD5 9f590af1161852a543bfb40c4c8b2ae1
BLAKE2b-256 ca00a4c7e8f1c5f980d0bded7a83b8d6f17d9241476be16b3c47444f735bf4f9

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1d5e52a121ae1d12caeb011fcc8d80cfd44381ba6efd8817e0e9a730f2cb2308
MD5 a0cfbefd581dc4cc3128ee63248ab5d1
BLAKE2b-256 295a0a8a5446c37a40be512de27c02c8bf52caf6050d13330dad68ac07f0c0c9

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 932f2a71dcb27c9ad9b414b0e5b27b26954bce6e7e9549c95a53f563c23325e4
MD5 8acf0a92509c9a2678401a24edf20c0e
BLAKE2b-256 263465cc16b7392191d09c6b1a0ce9ef72d7054448012c6ec719e8ab598f5854

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f606818b53e8cb17c0e3048997c6cdb34eac8dfacbd0e6ad00f8672c512d3056
MD5 af54f63415a5b8b4f7bd73ae3434f48b
BLAKE2b-256 beed93f3bc4e10493eaacae7803078109fdc18c6e7eef98ccf639ef3db86cd2f

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c3f647405bdafc9efcb8d7af30aab34e37cac577f4c3f3c2b03c2cb9d86d7c3
MD5 589a2ad674acd3449e62065457b7a4fe
BLAKE2b-256 0865449f3c83e29488b25fbc6dcb6dd374dcd6dbcd61dce1f5f8e81b38506a45

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3badb03403bbdc23d05e0103eb94e33b60e18f7806d7e28c8669591d7588726a
MD5 87bde16f35362a376258f57c4dc068b7
BLAKE2b-256 37ba87513909f8ba8ceb081a69d9b359fa5488e951a4700f0ae950bfad096480

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4c85d1f4adfd186f06e6d40f38d8e228e5721b29c16d71d08aeaaac71d9a0df3
MD5 7ea8cb0d1e945567a898d48ed9dfbc59
BLAKE2b-256 3ca5366b5a4f00160d7ceef29bb36a6c1bf82a508194ac8f422fb58bd916f70b

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dcc6badf8887a3a1139a7b3776d20945c39e5fd948720ba22a449ac6c18aad5
MD5 e922914360531e04c4a398a689b62350
BLAKE2b-256 aadc1880132567c77f71b782ce6c79c5d94508f74f790afa5c6079a89307e589

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.14-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fec898368bb82552e0d8ae096673765b0e96149ef49c1ed48fbfeb056d2ddea0
MD5 dfe5c546dddcc448db385ca5f28a3cd7
BLAKE2b-256 c63f89de490fe413971bc62139faf4129dc0539d41f2b6bb992d3aa5d3b6e9ca

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.14-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.14-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for pedalboard-0.3.14-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e96b9a9218c83a16213f01ab809b409a7fc454ccc430c1418d7e997f0ca94dd
MD5 c67054f7857f28d6721abd8f882fac97
BLAKE2b-256 b56c7b2f9a389fc2d9131e0b0ba416ec16c234272f8de43a83b8e24c53f40cd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page