Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon supported PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations:
    • Convolution
    • Compressor
    • Chorus
    • Distortion
    • Gain
    • HighpassFilter
    • LadderFilter
    • Limiter
    • LowpassFilter
    • Phaser
    • Reverb
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-84, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

A very basic example of how to use pedalboard's built-in plugins:

import soundfile as sf
from pedalboard import (
    Pedalboard,
    Convolution,
    Compressor,
    Chorus,
    Gain,
    Reverb,
    Limiter,
    LadderFilter,
    Phaser,
)

audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
], sample_rate=sample_rate)

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# Run the audio through this pedalboard!
effected = board(audio)

# Write the audio back as a wav file:
with sf.SoundFile('./processed-output-stereo.wav', 'w', samplerate=sample_rate, channels=len(effected.shape)) as f:
    f.write(effected)

Loading a VST3® plugin and manipulating its parameters

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 package from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz',
#   'input_lvl_db',
#   'sensitivity_db',
#   'ratio',
#   'attack_ms',
#   'release_ms',
#   'makeup_db',
#   'mix',
#   'output_lvl_db',
#   'sc_active',
#   'full_bandwidth',
#   'bypass',
#   'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate=sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()], sample_rate=sample_rate)
# ...and run that pedalboard with the same VST instance!
effected = board(audio)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021 Spotify AB.

pedalboard is licensed under the GNU General Public License v3, because:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.3.8-pp37-pypy37_pp73-win_amd64.whl (2.5 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.8-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

pedalboard-0.3.8-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.8-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.3.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ x86-64

pedalboard-0.3.8-cp310-cp310-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pedalboard-0.3.8-cp310-cp310-macosx_10_9_universal2.whl (5.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.8-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.3.8-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

pedalboard-0.3.8-cp39-cp39-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pedalboard-0.3.8-cp39-cp39-macosx_10_9_universal2.whl (5.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.8-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.3.8-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

pedalboard-0.3.8-cp38-cp38-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pedalboard-0.3.8-cp38-cp38-macosx_10_9_universal2.whl (5.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.8-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.3.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

pedalboard-0.3.8-cp37-cp37m-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.3.8-cp36-cp36m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.3.8-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

pedalboard-0.3.8-cp36-cp36m-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.3.8-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 364bdf3774b662369fe8b70265230f13103ad5d9a4a3cccd7dd191cc498ab131
MD5 f88f66d9bb182e0e048eca416f3b5a06
BLAKE2b-256 e78e63942c08e213923424d5dc2f11a2a791f8188cb20f03afd9df06cc3480d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.8-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ea50cb023fc7eb53edc7f0a14419a30d7ee24d51056eb567dba56af6cdb6cb4a
MD5 0cbf7a2587d9cf202784253fd007ad38
BLAKE2b-256 acf8a51d629e4e24ba8e72eba8e11167c6b4b26102df6c9599559627e3d3836d

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a16ca8f4907106a9e6011a167cb5fcd0ea0fb082a38b2f485b3c86be64319dd0
MD5 191dfe9098b4c53e0ac0181bdc2480ba
BLAKE2b-256 8dcf12f073258c2b5ade3ff1cf410395317bd2bfb5b6688ec96334a29f019932

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f4fa21a82f67d08364bdb87d6217c85f38aa2aa9e3800c7777120ce5e9129bb7
MD5 491aefe9fdaec3e0852b411d1c28685f
BLAKE2b-256 f97a42536418a11c12fbf3823bebe98abeaa155573a668df99c9c4a3670a05a1

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.8-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ce7e6ed877297c9c731fabbc39e090ac938df742431587e5df8c0eb10e77deec
MD5 e539970d3e00b3e4898fa9d406503b25
BLAKE2b-256 4f196089d7f739d249bb47d7590ad654334b37ec764093078241f4fdbb9e0d42

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a8d85ad2e281479699e7a795abdef15fe943e8df928be43beff39b6e8d5b672
MD5 1e0e3826b4a7658bc9f3c374dc9bc72d
BLAKE2b-256 e674648d58727086d631e148f68f4202712bcaa2eb5600c76d5c309d04c74ee6

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0b0967c8ad38a32b33eddedc13024bacd6441f7e52302f933e510c4a58769da7
MD5 a365bd739c68be55c2783c5be5ea7883
BLAKE2b-256 37af3e8fcd630440aa5b89d5ebfb95bce4ce9a52c83e3ee1eeaf588ff9aef34d

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 9ac12b15ccec9b42a2e6ac93e60091407c27ba98ae75fe68b7a5ae0fe126b401
MD5 c6758fbe695eb8b835032e01c7bc6c82
BLAKE2b-256 c7db87db46936bed428f3d8c98c6b8bd1c9c6b324f00433f546202c105999711

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.8-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 91b3d45497302e072ddcb5e08fe06343d7a6ad6413207ce18a8946bf788e79e8
MD5 98e370db2560e4966b49c6641514cee4
BLAKE2b-256 9cff9ff72bc7336dd56dc93ccf73547412164b03968cb46d6b588b5c36df64d9

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 436e22e6e4f1db2b94a04ec34e346299175dbd9772911efb11de953860e17100
MD5 e7ed57129814a2b7da44fc1059d52ba4
BLAKE2b-256 345be5b19c4a088b8f99f063e09543855f4decdf2f5db57aa1efecd3a95b65ac

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f66fc814c046a14875cd5e9adafe4168c05ad8b79505d09d3ad42ba76891292b
MD5 ec4145a1cfbd91c203cb4a7c46777351
BLAKE2b-256 e404a73f9ef5bd4415c386d50799194dd1ab6bf4f612597619660114d1c30ed7

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 edf46f7e2c09b07a5785dc19a951c652e3951653abdd4f548a3e895425fcb21b
MD5 c31a94c957734d163904f2eaad0ba616
BLAKE2b-256 e21b59fc292bec43a3199c433c073a6e905811c7540bbe9d6f73fb7d651b9532

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.8-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eed71e0f468570587ccf97033047fd13673cb37584ef013e93d1d8aab5f8134d
MD5 574d53b5687d7bd7f157c08ccd0c480c
BLAKE2b-256 66e730bc349f1d0e26764105cb8d45704f41273e53744716a5041ac22241984e

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 59996424a914c61e2af496f1125acea4e1551022b4b4af0a17a623abfa3004b4
MD5 c549545a71cd35610dfec0ee4813b407
BLAKE2b-256 43e822531a30decb1506f6c8a8cf2e3b84f4b656eaa70cc61cf56388e0a7c8d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 156373921829bb004d9ed080738b04028480ec24bfd01327be330a09435424bf
MD5 8f5e95d9e5f402cc8f43caec4cbdeeb0
BLAKE2b-256 eca0687926af88def4865fe7cad5f6415b71f7c692bd358d5a96cafbac57d401

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5a196c09026e10c4fb36b392e1a2e1659725202428e1bc9c13917eabb264bf4a
MD5 4f1f1cce280798725e71136ea8e10da9
BLAKE2b-256 792792a7dec81fe45b5f968a83560d7d12c1e44b72f130dc46b8da0bca7b2757

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.8-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a09fe7abb3c4540ea1522b35507806900dce43db03370798f7d6f34ae6e624d9
MD5 66884538a7cb9d608b820843e77dd864
BLAKE2b-256 5f46a38b4593cf9ccd7ca5971b1040bb405dfd9274bb5072251d13453e6c9bd3

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3bdce7198050c4b8b47dcd871f68f8d8033a026571ec5080c3222e12339b088
MD5 20745c2113f4a3bd641cd2c93604d242
BLAKE2b-256 4703e10c6bc59e431e025377b9861be9779a8b6139c9e56035c3ec5593f1c704

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e7c1884629db784f7f45e1c5ae6cbbf24d0e8182c50ef3cd57ac2503a8a55cb6
MD5 7ac6e21d3cefb2e2a800828e223ec114
BLAKE2b-256 286771e582bc4d68062696bce8da2ea06656a394cf433c6864e2359af1c97bee

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.8-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0e7eebacbcf21ea6641fb71303b8db643d091250550fbd2e1e39ae8686a8dd95
MD5 582b42fd0c9a829253dbcc6c6e686534
BLAKE2b-256 cad4c34d060462a1be13cf6a851795189b20c55b32da9aa55a75809a51432dd0

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.8-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.8-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for pedalboard-0.3.8-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 005975808a7224becdf2e0ff6049b3c4f3e78489a7fb2579e3f7267cf05e9fc8
MD5 e5968e9ad66be26c58702d4e81869ae0
BLAKE2b-256 4026ee00b5977fa18ab0799c5ee3346d905cf5d579303c4ac9e770e6f3450436

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page