Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations:
    • Convolution
    • Compressor
    • Chorus
    • Distortion
    • Gain
    • HighpassFilter
    • LadderFilter
    • Limiter
    • LowpassFilter
    • Phaser
    • Reverb
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

A very basic example of how to use pedalboard's built-in plugins:

import soundfile as sf
from pedalboard import (
    Pedalboard,
    Convolution,
    Compressor,
    Chorus,
    Gain,
    Reverb,
    Limiter,
    LadderFilter,
    Phaser,
)

audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
], sample_rate=sample_rate)

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# Run the audio through this pedalboard!
effected = board(audio)

# Write the audio back as a wav file:
with sf.SoundFile('./processed-output-stereo.wav', 'w', samplerate=sample_rate, channels=len(effected.shape)) as f:
    f.write(effected)

Loading a VST3® plugin and manipulating its parameters

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 package from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz',
#   'input_lvl_db',
#   'sensitivity_db',
#   'ratio',
#   'attack_ms',
#   'release_ms',
#   'makeup_db',
#   'mix',
#   'output_lvl_db',
#   'sc_active',
#   'full_bandwidth',
#   'bypass',
#   'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate=sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()], sample_rate=sample_rate)
# ...and run that pedalboard with the same VST instance!
effected = board(audio)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021 Spotify AB.

pedalboard is licensed under the GNU General Public License v3, because:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.3.9-pp38-pypy38_pp73-win_amd64.whl (2.4 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.9-pp37-pypy37_pp73-win_amd64.whl (2.4 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.3.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.3.9-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.3.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-cp310-cp310-macosx_10_9_universal2.whl (6.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.9-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.3.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-cp39-cp39-macosx_10_9_universal2.whl (6.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.9-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.3.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-cp38-cp38-macosx_10_9_universal2.whl (6.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.3.9-cp37-cp37m-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.3.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.3.9-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.3.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.3.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.3.9-cp36-cp36m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.3.9-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2cc044754809be1040471d0242bdbadbbfa0e17569146f03d318c33b2e1a664b
MD5 88579cb1c61a00f9148f3beaab2ba730
BLAKE2b-256 ca9a9105b3d3f94b2c95a4a195bc5a2198d464687f6240402997160dd853b984

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b444adb2bfa4e7326a8de7777bc6f7679ef3950edc20d7207edeacb5cd7d2e21
MD5 3fb7046cd8d9d64a45627c9318181f8b
BLAKE2b-256 3ee4e53d578d8b1d9ace5019b553b3be685a35060356d9929afb914b52680693

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f878edebaf223639240ae8cbae9a7f5d9d291535c93202daa0b8e60c79cebe7
MD5 08fc367607d60599b1d41a16dc87c543
BLAKE2b-256 e11a70d69cde9af0d8ac1d01af53f8094c43caeb1a2d8c448ba29218605e63c3

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24ffa98ec65d0d948f9b3c10d6dc74838bf8a36404706cb58b2a678a7cf31e9f
MD5 bb779d881026f27c1397995adda14171
BLAKE2b-256 c3e915fd8b752ed1860ee15f467380ad7157b5ad0179d6da7a7da36db38d07cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 522f1359e9e4abf733db13c8b1b179b0cea94bfcdcd3aaf9d9e3b6f771ab4d15
MD5 370ace46600e17d5d9a38b769921b146
BLAKE2b-256 83b1be78b090eada8242e42a0fc2399de26477be6910fc370c2b952b83be14f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9015c24cd4b8bcef793661a1a641a86260ddf0cee764db42947bbe764dd1877e
MD5 efd5b144d756a7d429f397ed6bfbcc4d
BLAKE2b-256 215a093863829518029667f0a372efead837d4ceeb48910db70a762efc5705ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e0f06cdfcefffeb94fda881a9657a69b3da2cce4737df8ded6b6e82cfa1cb161
MD5 02571ecc31c51aee44b12f1aeba554a2
BLAKE2b-256 c8dd0428150c72081e0466d50f00b706907e8ab6ab8340dbe6f25dcfb8045355

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db926036f122dc0edb2c579592ef553e688c5a854e5a3f01f40dafdfefefab31
MD5 9e53c627337a2554ac2c3f4b16f4e028
BLAKE2b-256 eaebb56bea3e58b1c25e58106e0935b9cdbf96c495ffc8d4ce5b31b6e0e40d13

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c361765a30977021853e11b997f47cca8a25fc1535e5c02811e0d08d57b591de
MD5 2a52970c76baefdd2db292e4a8cae61c
BLAKE2b-256 2320b0ee62c93b97fb397ce79ff569bc70c994848fc81f682237c2829b1ac7f7

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9aacc82cc68a5b5780b32066494139ae81ddde941fbc131769a3563d3bf602ee
MD5 00468a6fb5da671e93c6eb0845cfee69
BLAKE2b-256 9c0dcbae233c8605f8f71927f2e078db4139b33904e2caa04680db8b9345a60d

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0033ccdab4f45d156323022cfaf152bf2e17b0083a674d1fa7953d5e87a42ff4
MD5 7a9f2a56e2a127795aef3c7774c8be69
BLAKE2b-256 591da7572e90d4ddd926fb83f16711bad743faa5b03ffb8d4405c86813772a32

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ce6c2ddc4db1663781514d89b3e12117dfd0b63286d7968fdb9ef2d5c13c7205
MD5 aa282030cf11cbb431a57345d44ea7fa
BLAKE2b-256 f4df609f03f557037d1cc009ae8b7755f7b5f74bc2f1997c588a1c28669668c5

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dacfe8c225f37eddd7795f334875d78327c3944d32d0a459cb07abb4b5edceff
MD5 85b5b7f594770c2a916312f16999dad4
BLAKE2b-256 d480c45a5066cca8b974266f9524622a0f11cf8c929247840fbec049bf06d4c9

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb69f952cf209d96c6d9d3665c9f765a196af1d3165a3cb85ca7c3845eb70ee2
MD5 4284f05cfa8e3d151454361cfcd6450d
BLAKE2b-256 b82d651aef5d39ec0fbc6a525dbc2db0103230c48c93eac1070656780f1d2806

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 38e501ffc6fac096d43a8f158fd6bec285d8609811e807f393e077c5b58863e0
MD5 85f106a8c19b3ea367b5d58a21939002
BLAKE2b-256 eec013d23092aae895e4817295c81fd75ca6dfadb133d5d8fba6da01bb806647

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9de239f21c40433347df44166a843bda560f6ef43a3d1921669d7461506c1a69
MD5 bc208d6af878e04cd9b447d0dd63eb2b
BLAKE2b-256 20fa88923fdffb01fa17e0cb6667dc8abb6875b3677ab95f4e30d57eabae52a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 462e50ccca5c388b9bdba177de9d9854ce6bd23dec7afc79fed8a8daa1788d4a
MD5 cc90632b90365c6a6670dd987bb149a8
BLAKE2b-256 9a4effb077d3d36ef5fc14a0a0ed0c8c36c383a443cbc1c0685a859214e3c57e

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 398b4cec89940bc25dd2f48227242195e7663d7a32bcfb492d05b50c64d47633
MD5 44dd229d1ecbdf729fab6b420b4edc86
BLAKE2b-256 e7cbbfd5d70155954809a1a2ccd6548a219cffb673f73eba5b4d070ccd45a767

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba1eda71e145279329cf3eac674437fafd949d773ff9a350c2684d3354108c15
MD5 13e5623c97ff67a86e6fd30a42b986fc
BLAKE2b-256 8705b8ebd38dd0dbf24424b4460ba6fe40e473ec9bfb5261dc44cf1ed59a74f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.1 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bb0e376ecb5813279278013590bc832547a418f78b0bc033af3bcff1337be21f
MD5 5bc5c3aa2d9d9ac6a6191056dc3ed1fb
BLAKE2b-256 c9f23895d814126c3f1d719148bb6c91ef0df31dcfa946d287a11e4feda21725

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 810c00a4d07a6da3d7dd972a64fe04bf5263543cd936a6982c986dce49b4c102
MD5 9d3abf915101d08b522df01fb4d766d8
BLAKE2b-256 9182255465f82710e15c2ea5e2eca33072bbe07768405e95a177310aaa3fe799

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18bcc27039cd4be7f1d4025fd082328956e239c197f5325b140b4725a4c0921c
MD5 14090fc9c1010dd212a398c3012a0e82
BLAKE2b-256 a67288b5d03d6d1ba9bf42652cd4bc87586acca94bc99e26b2234e50e13acc1d

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ee4e96b33b7803ae796c9d1365782f3c633e2d4f4a316c6cacdec4570afdbc5
MD5 3b7e73490ed90cba2f896dca4096529a
BLAKE2b-256 e7ae502bb60939270eff14b77d2df17c97b588b36bcafacf2b4896742d2450d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82ae455ed8c2923d1e889c411247a0fb19e5a991b161cd1c2bcdaa40e891ebe7
MD5 ae64f2408fe5cb448599289a47c3c2a9
BLAKE2b-256 b932af2cd1524fd69688374b0a4339e025e7fee4e9acb364a43f604d79e3a175

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 950dc9408e2033caba6dfae1e6b14aeb9f995f142b0d48b0940a451ef8fdb716
MD5 54fc619f2616b3f9dcbdb4cca8f72f65
BLAKE2b-256 958fa6e53c57920c82fabe3fc13672f6ce25c77c2350d92d2a31f7300f28da85

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0aa792aeb8622246049db705e9f13fa1ff3ea7bf122caf013d319b15395f1c1f
MD5 cd529e3d23c40f8419fe48d9dd09d8ca
BLAKE2b-256 c1ff9b38451a8fad66d9a1a160180d127d31ca5c65dea2e6c4ddca2f1ef3db7c

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.3.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ba10e686f646eebb933c66c3cf987352a4cd6192104b52e3d24748156d903a11
MD5 10fb20bbf1956941529576d3a89d79be
BLAKE2b-256 c26161d225ded3f85d0decf40455035d0d2437e9d52266a146e506d1e6023679

See more details on using hashes here.

File details

Details for the file pedalboard-0.3.9-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.3.9-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for pedalboard-0.3.9-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ed39c119f1cfa695b3d25631405528a02f4074d06ec6893192513bd148471d4
MD5 b7e7570cd4f59bf079007da43302f856
BLAKE2b-256 1ec86a05cd69354236aa313ae8b4a62c652cbbc2d68dd181d9d16bc45e4082ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page