Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

Quick Start

import soundfile as sf
from pedalboard import Pedalboard, Chorus, Reverb

# Read in an audio file:
audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, s)

# Write the audio back as a wav file:
sf.write('./processed-output.wav', effected, sample_rate)

Making a guitar-style pedalboard

import soundfile as sf
# Don't do import *! (It just makes this example smaller)
from pedalboard import *

audio, sample_rate = sf.read('./guitar-input.wav')

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, sample_rate)

# Write the audio back as a wav file:
sf.write('./guitar-output.wav', effected, sample_rate)

Using VST3® or Audio Unit plugins

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

import soundfile as sf
from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.4.0-pp38-pypy38_pp73-win_amd64.whl (2.7 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.0-pp37-pypy37_pp73-win_amd64.whl (2.7 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.0-cp310-cp310-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-cp310-cp310-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.0-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-cp39-cp39-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.0-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-cp38-cp38-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.0-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.4.0-cp36-cp36m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.4.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7c516f1da3957b5f9f98c39588327a6e9f0467a2eb5fa39bad71a433132ca631
MD5 b078528c92e6b7fb7408db8556be7f47
BLAKE2b-256 299942066c2c9d57ee0077c877a880390ebe3c46b634f34e4fbda071ee5dfdec

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9819c8b6bdfecc8c273d53b25c20bb0c02537c4345cb6725caf886cca5be6e1c
MD5 34d7f73cc2ddaf1cbdf8f662ad8166ed
BLAKE2b-256 bda8db1373678f546457c18d1f51e6cb9c128cc0a8a0b9639762bc1cbf79b3b3

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c1f9bc8888983c6185d2d79af9b26c883b0280915eadbda466dead3fbcfd8d7
MD5 6433f821c3fa8f8b6bcf645e4c5d4db1
BLAKE2b-256 c588cb685d9341458528a5362ca14fa1d759e98ad448480b31cb80afcdb2a6a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6543b7f7d40a447f288e237a086acb3cc86fd7d1d7cade3604c15f805cf9f306
MD5 54a975717240666f42ddc2143aa4b2ad
BLAKE2b-256 41da688f056cfba465f2496ee60a99157acf5afdf213b9ccf788591c105f1846

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8ef41f32337a06d13bec46dc3ce2a08ad260e4e703101d8d55d06f0887129852
MD5 1d918dc136a854d3445fa351edd4e2d1
BLAKE2b-256 2f8be79660bf9cfca6d3e6aaac1a5d5b05917aa38a56d46ba0375ddc9be8d6e5

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0101385875328bc3acd4b2a8f198296f902a02080ae1998ffebc4fc8eef370ac
MD5 833c616fd10f8f1916f6ea68422dd52d
BLAKE2b-256 fbee196643e11c09001bd92cb98348c959a549cb37c4f0883dd0c9658928a74e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be46ef545585376702ea7376d879f63f5b3ca1ef62c68d225ef6b572e3b95665
MD5 2d53832a56ab3e8c56ce206702530f1e
BLAKE2b-256 beae4450bbd5f690b88b591759d3a3c5f55095eaaa1973eb44e3bb8b3f04a541

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 016cbbe99a8402f39f19e4f66f063cba7b84a0a8e2200f99a4d0e85c55a9fffc
MD5 c0d73c1d1a72695b53fed5769913e0b2
BLAKE2b-256 821f9276abd3c988ab4313f9feaccbc88707129230a424c72b58f0efadb45c29

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a4d5cc8645a9ea0240dee79dfb6c5abf5ee6a200580dad8d2301a45244580187
MD5 e0e529bb3b3739fce59c5052ffe1a559
BLAKE2b-256 066aa1ddfed9c45aaca549c57b6b7ca9e1e9acdd3d31bfea7f9bf8a35dfdc581

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90b9d64622d633ca3d226e27a275c12d498f4d60156cfadb1b1d903c64cc1508
MD5 623bc27943baf1ab523c555925b47346
BLAKE2b-256 697eb1e34ccc1fdecde0d97f94f1df9c171e9ba5204b572daa1fb03c0088aa47

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4a7fd3e992cc9c2cb1c2529971d9ca7420ffd3a14b3c80ba85e6bf95d7958ffd
MD5 5752a2b18a2f6c7d41ba19a990f42ad8
BLAKE2b-256 4349cd90b03841e0ced3137fa9d7a76db972a8b44f9177c282f5e73f335cae66

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 54eda0decc97e447633414cb04b9e8365c7d4820ac38d43eb05c87b88d5c336f
MD5 755f1790a68bf8512327554fa5cc68b3
BLAKE2b-256 e5b928329fe5ec30658aee6234cb928569b6164de9894705826d7b7cd9c797ca

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1ff9185714a55b5cfb78026345c06a511908ab5f1b72ca7b4200009245ce5caa
MD5 38beed60801ee637c3631fb47b27ae86
BLAKE2b-256 3707796ef148ab219f8641a5ec4d09295bb93ca39606eb9cc9a4b61660382fb3

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d5fce91a33303ffca150318e5269436aa9cd006ba09cec1e0883bc5f7b3d557
MD5 55a38686ab20540b9610e373e527b0f9
BLAKE2b-256 1b27aa2316087cdabd7a4cb21aabc955b29c1c7960ecdb059d7d5ce41e0d092e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d3eabca5696745853600c19bf9f513aa0b968a2c16521f6d2ac81ccb0d320fe
MD5 b08ec2ae01d2fc0c12eba9cb0138b20a
BLAKE2b-256 5aced12a257191f28ff9d8ed5e0814585e517f85f861d6f3012330592b48be29

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 89c9e54ac6a6837fef3ca12aa6bbeed9389b0c8c01bfef4a274b384a2880ac52
MD5 f35c7ae7d13ec137e54fbb12b36e2442
BLAKE2b-256 d1ca5297005aa8af4ab80065df9d063f344c82887aae2ffa507f4a8852972c7b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c417f3a94bae38d592c0e823acb7409a774acc94ae02004738250f6358a90913
MD5 91da00a6742d91b85c7a99d2221e48b3
BLAKE2b-256 3554db04c7d8a7433df780fd7c4b8ac87edac3cf255e089b3b68ffb7a7d305e0

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad11cd81a8e67e419df61bb6ebbd386543e9682361914d6d4e524ced8e9e9e1e
MD5 bb3caad8091f4768a834657835013668
BLAKE2b-256 08ef5fc800cd888a03cc6d403bd7c5f3e45bd8831ed4c5509dd9131b2acde05d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 78471679f9ce7616a4638b696679b8a06f7fb54502bec76e675c3eb5ebacc8e1
MD5 f7d4ac29c1d0887630ae81f49d51ff94
BLAKE2b-256 25765bd9a94e296c688e3e2b199c20f4740625ff38d659b6300e7ca3176b0c36

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1373304e71520620d8337bb7d78edd7d51d8a6d2b7210e84984427172f5131f4
MD5 faa87a0f0b62af18bfc2addb63ac6e4b
BLAKE2b-256 144fe19d35ec54c4adcd567e3b5db4b07baa74184323b008e4759827dd017be3

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 748a916c2b2527df91fb1e9d8836d7a98e4b1c5084ceab701b5289dffb0662a4
MD5 3f4bd23db54498498f7ac1bf552f207e
BLAKE2b-256 53e77950696b0db3e709e2571e2b5877f0e9709201184c97583f80c47afbd7d1

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46719acaaf6dec8fee5ab0161713f8938ca587ea6e7bd00fccaa9bc8200cee60
MD5 e3ef866f66ee06af06589f0bad6f4dbb
BLAKE2b-256 11c494b382dbab5a205488e1e761fd2577cad5955237efd7f27156a7a7cf17f5

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fd1faa059d53380b8e474898ce086e2b4ab5eb6b7da1b2babbc5b9bbed34f6c
MD5 8f461a880901eee41d38dc44f27053ab
BLAKE2b-256 b379669bba1f58c1dff634ceb32fb005417cee71c4c7acf1fa2e4041854738f2

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d10d6f3b62365c411061c403c18dc624160e1b54e96f8df52027c289439bc825
MD5 55a0002aef1fe660376207346d465bc8
BLAKE2b-256 e9f604715546c6857a9589b80b0825b6fdd9afc38f90337ae805eff77df3de21

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 627739d5d463b98abc1b14c7daa447cc20f86d574b0cbb1db717b2103729f93e
MD5 f8ecb86f3fcc7935ea91b306779b497c
BLAKE2b-256 503e54f929881e3112426c309e1d6540ab297e92482ed2e86da10082b1f5419b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 526d82b14e2d00419edc9fc70ec6366edd2c7c17778fdedb3b9892122490d0b1
MD5 1e2fb93022ec873e6713c6912b609ad3
BLAKE2b-256 8bfb0d7febfa3648633034ba30494f9ac52a6757c155d07eb9612c19e24eacc3

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 32b02261db0cc884a15f7553b68600645300f3a720c57569189c92f6e708b680
MD5 756572a3e480c47fd713473a7e569c84
BLAKE2b-256 fce97e79c06331664d6accb79fa0f243d6930ace27e6e5f2738eff23d6b76738

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0a19b90dfecd843c1cd6112225c125c66458ef0d435582c0b92cedf90135b9e6
MD5 4e7b44eee75e756a7c770e74125d1b5b
BLAKE2b-256 c882f256fcf2d9f52acced0c3a4b1da094636e6442b8c9534c665b8035f2e3ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page