Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

Quick Start

import soundfile as sf
from pedalboard import Pedalboard, Chorus, Reverb

# Read in an audio file:
audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, s)

# Write the audio back as a wav file:
sf.write('./processed-output.wav', effected, sample_rate)

Making a guitar-style pedalboard

import soundfile as sf
# Don't do import *! (It just makes this example smaller)
from pedalboard import *

audio, sample_rate = sf.read('./guitar-input.wav')

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, sample_rate)

# Write the audio back as a wav file:
sf.write('./guitar-output.wav', effected, sample_rate)

Using VST3® or Audio Unit plugins

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

import soundfile as sf
from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.4.1-pp38-pypy38_pp73-win_amd64.whl (2.7 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.1-pp37-pypy37_pp73-win_amd64.whl (2.7 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.1-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-cp310-cp310-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.1-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-cp39-cp39-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.1-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-cp38-cp38-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.1-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.4.1-cp36-cp36m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.1-cp36-cp36m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.4.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e94c413cecc7301449702ca7efad6d2a4435abc7e0bf503f58595cf472931562
MD5 d15d87c65338add680f1b97bb44d470d
BLAKE2b-256 2750447d9886b01e6c2e1b4ba8dbe8ad55d342d032ed549f0e77c731847c772d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fe1b4d0437fc4cbba277234e09378597a7a36ad480796f8c06cf51d6cb7eb33
MD5 ffa38034ac5321dcd9cc1223ce89bc2e
BLAKE2b-256 d3ebf3bea0d3ddefb5c08d6cf954f8f05c03e0d9a043c2b00832735aea3a1aac

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34f33ce139273b1878742339896b3f0e8ce56d3fd7b5a320203535316cc0720d
MD5 0ba4cb13d34086c55e95c8c77051aa61
BLAKE2b-256 6083b451f645790f96fc877acb305b2c3d589638a197556da1a14b59ba4d92d7

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 201930405134a5995b3b2b9cc5caaaa4afc4b67b919b93232a3c2b5255f60635
MD5 c6dbbca8428ef497c767d0054096d3d0
BLAKE2b-256 b6d4c2724ccd60d6768c4e18c6e5f12cf73fa9d97d1f418758491473c421c138

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 95472e71547f47d3b621e8a2eee8fb479e9a70839095880405df5b7b582e15fd
MD5 a00c5dbe182c356fb845e4108d0a012c
BLAKE2b-256 6e440b92c291ba4f1f46ac502b87edb26516b89ab926207497a14b1ea114ee1e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0275d7b5046a24a22413f868805e2bdce74daf5af924f031318bd73d5015b9f0
MD5 63bf2c26996fd2cb2ba664c6e55018d1
BLAKE2b-256 a6e6e0b7f1cb383ceaa1093fa4571d6a788ef49a38eb1de07da7d8857e917150

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a52f111914c177280688ce8a988b9d516b9979a9fb7c8286f138137cb2560a70
MD5 bfa912bed053b2d09c9edf502d15a384
BLAKE2b-256 dade9db5884ad1ae0f779d27829cc0e3f8544e986b929697c934525bf06efe90

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4559af8cb2a2fea64347e3c54ef250899eec5e0e8a6e467e87d99012928b6233
MD5 c6a68935ddbe69a6f3c18e45090bc45d
BLAKE2b-256 96d4c52bd87130d019ed0f903400b634afaf9923e22cb4599aaaefcc2fc3a04e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 64f0d742624007037846105d1cc6bc9e4459bac3c75b4490f3e60036da9947f7
MD5 9e17168f4095f9e43be37fc2b4b6dc78
BLAKE2b-256 d301dc62c69fc2b081468a4e2f5d6b49f4974aceb6f76d4cfd8b9299d6ea0416

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4b8beccc0cb50e78feaceeeb05a4a8c0fb08f70733ada337ddf580293dba204
MD5 d74e76a54831b8387439cdd37dc1f7af
BLAKE2b-256 e3bab5dbefa39c5173a2b58012bf93b2a4d3fc7b2b74686f133dd7e2efb3814a

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23e7eaf447b9b8b54685d628dbad2b456c4c2f04a7e0070c692d78fefe39337e
MD5 865318cf9a3ec2ca48ae7e77beee7318
BLAKE2b-256 3c8c22e0909697ff3221878b6a9bad1eddca5925a0f62787d784fdcce6c3790b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d42b9c95f16cc5ac992a1ad0ff4dc861ca16a5582759f1b621b69fa341c69d64
MD5 37ae32c4f0970c5b039d1488ce0f9f81
BLAKE2b-256 90a2de5ada9f8dc7058d462477c2a0a7224766581ac2c9d4c34af68c0207c677

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 21d9cf163336457726990259f4e951e57bdea015d993c49bce5fca4e04c96fbb
MD5 214f3e7b8f98c0b9b93961f0b2f47aff
BLAKE2b-256 0e537d21987c8d68adfbb960de3549e3a0619a2f8cf15062119ec9a9ad627bf3

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 15f8edee0cf6550927163ac8b69412fa678fbd11c596cabb086e733a657a152e
MD5 866d7dbd7a5a34676870f5c0cc36cdbc
BLAKE2b-256 bac251caf6c4e0803ccd30ec72c667503fbabe97631dbb060ed5ddf7bc4ea36b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 76f4bfbc151b484164a1b3b5fc857f6e8be8d3b4390406a0dd979fa680d9d629
MD5 addb9303c6c9ef04422768d25a328b96
BLAKE2b-256 9e669da4b8ae026d27b9e6e71e54b4efb6143cd0b82f0ab492df47f6446cbe26

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3a91694cea7c98b0e8057a61a292d4f9d3d1938684bf5e40a49b574812330624
MD5 df34eabc00f950d06a5c3aef0d2b8067
BLAKE2b-256 c3b28fe124e63ca59f1316e71e3672b12e8945b9f64bc868fd02dccc1e83ae4b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 781c6069974c8ad6c53790d9ed4aae4ccf3c7ddb36528a77a70737fffccf63f6
MD5 d5b251690bc2ff13fba4b30800b6fb2a
BLAKE2b-256 cb468877a7a778d39a6698849ffb8d6fb0dd60d0aa7ef2b0ab0d626299cd2d95

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 95a75fc2c509b306b253d83581a81a3b7f82ac09cdffe629376847b71183afe1
MD5 2ad9d9d1291a4a8ccabd67574cfffd69
BLAKE2b-256 743baa52047492402cd959aeccfbc868dcf6ac9300519faf646a1d90f29a9790

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4db1d19614057c6f8e65d37b6f22c838f45ced4fc80141dbd3cab53c86a0b210
MD5 0348037bf8b833c2e60ae521f10ade18
BLAKE2b-256 abb620b7c4408fff0d5a26c331d29c26a0275d5540f7d82a8b9cec3bd913401d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 83f397c59640c6e468c66c89fcf59fa0dfa58943e292855fba4d29ff64ff6e1f
MD5 d9ec8974c144f8e02c67712281c12d23
BLAKE2b-256 ba1461cf67839b1781701afc53506a5865b528a923ba793092e9069b4d576521

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 baded5e55a8069355bb8a0113bef281235ff7e4852798c8d99cc9a1f406d6b46
MD5 e87e1ea76d37847ba0ae9ef793f8d034
BLAKE2b-256 8826005c00bfc64799eab0f0f333a8582c3e3f6ec6965fc2e2a564a35eb9e9f3

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7302a3754ac50a117fd45df8eb30a861d4905c0b9c551ab4ecfe20bab629229c
MD5 160d3d7727beafe0a3a9c6526c3276de
BLAKE2b-256 fab82d806e0167cfcb8f058fdf6d4f5c26fda55542299feeb175d3a589553093

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6fc8381a6450276fe9e437ca7b65d655b61b68114f4050761cdfbf3b3cc7431e
MD5 05fab0a151cc7b4ad8ba9e2ad4368551
BLAKE2b-256 c9888b20eba1871d7cf51be415b8538722a912441716e7b7c0876b2d59a03e56

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c7ced47e1c08a243c2dfe8f47e3aeff55d8be0612df8bee10ef3a38639abc595
MD5 27161f6b574812d4b9f2fa54f7f9879c
BLAKE2b-256 05588b2e837603e74055ee408472273a78c2135f0b76ed15595913247094fdf5

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d0fb4a6244a4763cc32f8ebffe93ddc6374780b5f5368f4716fe45f841d9676a
MD5 8792568d8b676423b9906b59e54c1b11
BLAKE2b-256 dce1aa81d69bc06a1a6dc468f548babf38b32e88b7d4c378ddf8b2ccb09a83ee

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 650d019e4bde6c725f939afb5f80bb7d8fe1f85aaab9614aa8ae01bff6c3ffb2
MD5 0e0d1262ffce9d87ae29bdecd8e58575
BLAKE2b-256 4fcc268a609b17c2f8e01c5560a7910ba2c4c51124324c1ee5592dd613ba51ad

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b778010c97b8baa7235a4246b627d2b5bf8edaa9a6ed96117eebbb65959dedf
MD5 c93f83f07ba7c6d0c61f4330a1b8d524
BLAKE2b-256 f00671ba15698d9d4359180b27c52c65af4deae68e6893323d5576abac174c69

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c01dd2bfa51661a933ba08d3bd99bf12ed2a70138dd66a56a22f7b01b50a5bff
MD5 96c2537962d5bcdb8e5693d4bf31fc0f
BLAKE2b-256 183c49c1ea2df1e5dda1be9c3938f1e5f32e66e6888efa316cfd9687a63a275b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page