Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

Quick Start

import soundfile as sf
from pedalboard import Pedalboard, Chorus, Reverb

# Read in an audio file:
audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, s)

# Write the audio back as a wav file:
sf.write('./processed-output.wav', effected, sample_rate)

Making a guitar-style pedalboard

import soundfile as sf
# Don't do import *! (It just makes this example smaller)
from pedalboard import *

audio, sample_rate = sf.read('./guitar-input.wav')

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, sample_rate)

# Write the audio back as a wav file:
sf.write('./guitar-output.wav', effected, sample_rate)

Using VST3® or Audio Unit plugins

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

import soundfile as sf
from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.4.2-pp38-pypy38_pp73-win_amd64.whl (2.8 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.2-pp37-pypy37_pp73-win_amd64.whl (2.8 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.2-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-cp310-cp310-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.2-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-cp39-cp39-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.2-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-cp38-cp38-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.2-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.4.2-cp36-cp36m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.4.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 460eef71e401f18c8ee18a0479ed9fe79391251c489b1bb64d16ec251e056146
MD5 ea5b83becf43792604788e1830d4faae
BLAKE2b-256 80d8f807d151cf4497c4af6f61d8da0aff9ed2bf1ae9daaf19951256d72d1142

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b199fa847795dab08237e89523df9179d9858daf7c2f82021997e83fbdba54b
MD5 7dadf66219890bb0fb85a2c0bfc56277
BLAKE2b-256 8f767e31129c158e96b8697969d0753266d53cd7317b3a5f96200910f9260089

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0262fc64cd34e18467db9b3682810ed61a14a0ee7c7a5e5d0a38e916c10af15e
MD5 6e4aa0019df5eb63092b18d60dcc9633
BLAKE2b-256 77371a2f9b85a5a6e5c27b68aae04f8a3aedb505edb63a8d1fef3dd73fa20124

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc855a1f025f74cac78cfe292e5e87c85164cfbfaf2a58addcd8254a98876d7d
MD5 1996bcf52eba0fbb3028c7b0a5c74817
BLAKE2b-256 7dfc3f4344b0fbe218126cc0601511b630fdaa6ae4ed993e83b6b9cd2e7bce8e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d4061a33663f86fc7a947b023ec0095b010856d202a8005810badee936fe2da1
MD5 aeaf21bc297f429cb12d3344596446a0
BLAKE2b-256 05f1e8a1b52d938e186af0b6085ba55d81303f8195f27de849024acdce596f99

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6db5ea458f560b02e1ac87652b34df6684c14bbe7baa87dc62df2b9051358ad7
MD5 ce3a6ff5f49898e5a42504e160850c00
BLAKE2b-256 bf737a45a6d885d93f5ccaa773d4959c935a0d4b00e4804a9e830f4e9063d236

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b78802a48ee1e34ff6737c5c50bc5e663ef088b05f7155819546aa5e2c7c7a91
MD5 9db94e5806f0b830bd654edf3a241986
BLAKE2b-256 f95dec70165794f74e4338df933bb98a9d0d401494f6b1663504b3f2b32b889d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9020b42ed7eb8c5c617abe657147caff22c7de6593be27a8f4b0a70e313f58b
MD5 399f767857cb989e9bd4a533f6472b32
BLAKE2b-256 844f14309dfced6a0b9d75b43beaa2b2d9201d278515dadf29241a8f291785ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e58412528f42f19d8b6f82d2bff0eaa28f0ba083e9eb9db606c3db34b372eaea
MD5 283d0cc43325a733fc7a0c53ab3b3b42
BLAKE2b-256 541adc2ebdd04718b4f9bcad7ca6673f671e177cc85a0985397a5a20f1217fc9

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d80f65dbdce425065feb1bb9c27808aa63b45e4e3d747e7fb0335063da715e1a
MD5 c16b9b8a6d4ed9fe709766fc10f667a4
BLAKE2b-256 1dec9b00e142fa65fa24b93950f15f1f94e2c761fe30afe58f80382d4f37866c

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d3d81112f2ef0f02a1a3a5fa432356dcc932ae776507100f12540ab4dd8604f8
MD5 65a5d19f855099e384480040ec4374df
BLAKE2b-256 e63f4c19b626ce2fbe7fdfc5d8cffa1a12ccf3a8efb5db4215d8ec4032425c2a

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73a71d87925ca14066f247da1f53aff4a89a869c8ae204aaff2c13d34de8a67e
MD5 68ea31b4028882dfd9f9300656c61b1e
BLAKE2b-256 78739dd037b047e7dc97e1f9e1e839aa54d5359a4caac92fb25dc05bd7345868

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 04369fc083ddbd470b3b357bacaa7fbb6ee0a33b41e7750c30a22b252f65ba70
MD5 cf4159ef4a5119e15d21932f6d7b5bd6
BLAKE2b-256 2bcc77f4bbed60cc5457cd0ee8c6ee6f18f97aee03bfd5940b53929c99481498

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb9ae5093e241bcc6e135faedda1b72296d902d481abde1a98eb98fb60d20980
MD5 011607c5a61acb582c61c446fb39764d
BLAKE2b-256 dd856536557bcbf5d7a83d36790c3ad7de9b2b41ce585567715ed3bffc17ddbb

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0e8f800ddb9e5049a6114a8d0a9dc317989295749950b1f4598ecacf080ba77
MD5 2956d25aa01c3a68329c31fef39c0522
BLAKE2b-256 54dad3a647cfc266660b6269cf1eb945bd6a228234d6301ed1edec7394eab56e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d1bb41d268b936f749b24fe6f977d98ba5fd216635f27f04fa4b249209950ecf
MD5 f9717dac4a682f8926eae90c87fcfdda
BLAKE2b-256 1a108c7c85f453f26bcd4b9fe02c33b11ca334e56147c2274a4f66b3c2f1faf4

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4b65af1ff4c9ba3272a7c2e0f129aac4974d3035c53a94a3f3b419d49ea61107
MD5 e82638a9aba74a4118b60cbcbb51ee90
BLAKE2b-256 bbcca525bf8aaa201c5a8a7c0c05e33d92bf5fee094a74c4d28d441e07f39652

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec5098db818e77589c4cb7314b1dec4fcfc479fd007458ff6217f93aaab3b54e
MD5 a1fa11f2151d805b8a8e2e1552e0b569
BLAKE2b-256 21bd175b40e0078eda6fe6d9f80b50a729dbff43edf6612f63c50ae16e3753f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3661db1df1b9dad67c5c12367413e00bfaca77c4398d122fe73daf8609f6d1b
MD5 b14b63c42b5b6f03366798b3c98ba153
BLAKE2b-256 6a7876e586325f754383e888e0e084043df92ee59ac05d3de6209fdd7b610ec1

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 85ff3046a51dec9736b5136a8f445cd294ce46ab69f807a719087c09c8b1c42d
MD5 5f6a1d516d61b0756d32934ea66ec4ee
BLAKE2b-256 ccea8b241dc57ac11abec8ac3d7b0cf5bf22f8886e285a4a7170a53c1fd56817

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 998191fb5d3a77e3b8f0d057c4e6b5d642154bca0b37144430f37028cd833e25
MD5 2ffccde010d715455730b5af0e1d0181
BLAKE2b-256 1a903bd15f55bacc70083f63764638245ac5a39574ac30abd654aca4659a108e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f70efa912375db2090f9ace253bda2db56914649fda1efe39f96c6805d152988
MD5 da44f6660dfc79679fdf287127408c62
BLAKE2b-256 4dedbaa44d9d6249ba46c55e0ac7aa1289e765f49f18468bb5e638913f7cb4a1

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc5efbc06df5700096fce9fbca7c62461f8851344f326af80d0b76367e723318
MD5 8242ff6db949729b9372df96a974538e
BLAKE2b-256 ba06992c9d0c1d91370f87f50b9d772ee765c8f1d7b6a5543d9acaa647f25599

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 283bba235235106b3b6dbbfbeecd33e90e23937fe259e884deb6e5a3bbba12fb
MD5 5f7830a36009c53f1f3a9966e1c41009
BLAKE2b-256 d8bb9b190458b88617d5a802723bcc52414f0582d427e6a4ecb819f2df3eae6d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a44c99d45baebd2169c581cb13caab847a4f1dcbdfca2ea9514a184c8c722564
MD5 3a8aaee2807a697f0754051fe3d9d742
BLAKE2b-256 5bb0ddc500c2c04f32fa184aed6b452e90eccb53a30e4d6785b266bdb46b23de

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f004d2f976c21ddaccb3babdb339845a8a62679136d6f0bebc7338bcffede604
MD5 964290c16755bd5c11d45edf5df578c5
BLAKE2b-256 17652d6a3a82dee504ae7f97397637a88420e3cac86468dcd510c26ed8902b4d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87a946d29d0c54be76a84057a693f4d860b08413c3700a8d5fc5120c71da3a03
MD5 048c35f6c64cc6f81b39fdf8e8e15c41
BLAKE2b-256 ae7df7b113b4e7d333962367ca1a0dc351a9f0f4575993938156249e5d418988

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f64cd772ad6289c8664c22f8a94fd86f8c2107cb2171b3b331fcf6c029ab6231
MD5 fbec3f26daaa29bb4baf62a6bf48b0e7
BLAKE2b-256 69e25a4b9bc137fb440def6e3a1d01a966a5bd74beccacc25c2c4c2726aedd40

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page