Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party effects. It was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow.

Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster1 than SoxBindings
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for PyPy 7.3.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Plugin Compatibility

pedalboard allows loading VST3® and Audio Unit plugins, which could contain any code. Most plugins that have been tested work just fine with pedalboard, but some plugins may not work with pedalboard; at worst, some may even crash the Python interpreter without warning and with no ability to catch the error. For an ever-growing compatibility list, see COMPATIBILITY.md.

Most audio plugins are "well-behaved" and conform to a set of conventions for how audio plugins are supposed to work, but many do not conform to the VST3® or Audio Unit specifications. pedalboard attempts to detect some common programming errors in plugins and can work around many issues, including automatically detecting plugins that don't clear their internal state when asked. Even so, plugins can misbehave without pedalboard noticing.

If audio is being rendered incorrectly or if audio is "leaking" from one process() call to the next in an undesired fashion, try:

  1. Passing silence to the plugin in between calls to process(), to ensure that any reverb tails or other internal state has time to fade to silence
  2. Reloading the plugin every time audio is processed (with pedalboard.load_plugin)

Examples

Quick Start

import soundfile as sf
from pedalboard import Pedalboard, Chorus, Reverb

# Read in an audio file:
audio, sample_rate = sf.read('some-file.wav')

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, sample_rate)

# Write the audio back as a wav file:
sf.write('./processed-output.wav', effected, sample_rate)

Making a guitar-style pedalboard

import soundfile as sf
# Don't do import *! (It just makes this example smaller)
from pedalboard import *

audio, sample_rate = sf.read('./guitar-input.wav')

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, sample_rate)

# Write the audio back as a wav file:
sf.write('./guitar-output.wav', effected, sample_rate)

Using VST3® or Audio Unit plugins

import soundfile as sf
from pedalboard import Pedalboard, Reverb, load_plugin

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
audio, sample_rate = sf.read('some-file.wav')
effected = vst(audio, sample_rate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

import soundfile as sf
from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Frequently Asked Questions

Can Pedalboard be used with live (real-time) audio?

Technically, yes, Pedalboard could be used with live audio input/output. See @stefanobazzi's guitarboard project for an example that uses the python-sounddevice library to wire Pedalboard up to live audio.

However, there are a couple big caveats when talking about using Pedalboard in a live context. Python, as a language, is garbage-collected, meaning that your code randomly pauses on a regular interval to clean up unused objects. In most programs, this is not an issue at all. However, for live audio, garbage collection can result in random pops, clicks, or audio drop-outs that are very difficult to prevent.

Note that if your application processes audio in a streaming fashion, but allows for large buffer sizes (multiple seconds of audio) or soft real-time requirements, Pedalboard can be used there without issue. Examples of this use case include streaming audio processing over the network, or processing data offline but chunk-by-chunk.

Does Pedalboard support changing a plugin's parameters over time?

Yes! While there's no built-in function for this, it is possible to vary the parameters of a plugin over time manually:

import numpy
from pedalboard import Pedalboard, Compressor, Reverb

input_audio = ...
output_audio = np.zeros_like(input_audio)
board = Pedalboard([Compressor(), Reverb()])
reverb = board[-1]

# smaller step sizes would give a smoother transition,
# at the expense of processing speed
step_size_in_samples = 100

# Manually step through the audio 100 samples at a time
for i in range(0, input_audio.shape[0], step_size_in_samples):
    # Set the reverb's "wet" parameter to be equal to the percentage through the track
    # (i.e.: make a ramp from 0% to 100%)
    percentage_through_track = i / input_audio.shape[0]
    reverb.wet_level = percentage_through_track
    
    # Process this chunk of audio, setting `reset` to `False`
    # to ensure that reverb tails aren't cut off
    chunk = board.process(input_audio[i : i + step_size_in_samples], reset=False)
    output_audio[i : i + step_size_in_samples] = chunk

With this technique, it's possible to automate any parameter. Usually, using a step size of somewhere between 100 and 1,000 (2ms to 22ms at a 44.1kHz sample rate) is small enough to avoid hearing any audio artifacts, but big enough to avoid slowing down the code dramatically.

Can Pedalboard be used with VST instruments, instead of effects?

Not yet! The underlying framework (JUCE) supports VST and AU instruments just fine, but Pedalboard itself would have to be modified to support instruments.

Can Pedalboard plugins accept MIDI?

Not yet, either - although the underlying framework (JUCE) supports passing MIDI to plugins, so this would also be possible to add.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.4.3-pp38-pypy38_pp73-win_amd64.whl (2.8 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.3-pp37-pypy37_pp73-win_amd64.whl (2.8 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

pedalboard-0.4.3-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-cp310-cp310-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.3-cp39-cp39-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-cp39-cp39-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.3-cp38-cp38-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-cp38-cp38-macosx_10_9_universal2.whl (6.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

pedalboard-0.4.3-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pedalboard-0.4.3-cp36-cp36m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.4.3-cp36-cp36m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pedalboard-0.4.3-pp38-pypy38_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp38-pypy38_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5cbdcd73d5d7dc2354f81a5f64585043a7a7d7afb392057528f74491e05ef8dc
MD5 237273b348b71ca7ea25e827a1ea6dc6
BLAKE2b-256 e15552170aa904d72b37bf03420c3e70eff0a20e3c3ef03d95d05e7732a2cc4e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b3c048599671934d451cb44de03d83035e2f06878215c92c318512c082eb24b
MD5 76e712fcac688f6989b6941e39695e40
BLAKE2b-256 fdf8cdfb1d46a1332f09faaa6100051e729df038556bd6dee16f1fecc46d1854

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2266c15d8bba4924f5312d8d521e08009dc637281deab1fdf850f6044ed210b1
MD5 a9810ea2a03ff2e9cf6d48a74b1acbc1
BLAKE2b-256 3ff7d2c7ed25e59c315c95a124599cc909f7a64bf15a87ed2e44386f85c07294

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a97145b7ed920df58106e933660a889e8f498d3051813b30049384aae77203c
MD5 40ecff4e54e017be34ab338d5cc811f5
BLAKE2b-256 d8b4768d6dceffd3465689adb639980063b4f440457373ceff172b68100a8a3e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp37-pypy37_pp73-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp37-pypy37_pp73-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: PyPy, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4987bd09930230289215c4e6af3cdd0ea5189e07f9a130746112d6425076ffe6
MD5 897daec4c9338819e953ae9467d97696
BLAKE2b-256 cfe0c986e33ec9072935d3cdcbb9ab5175724306789945a922ce8bb9d7f9d337

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: PyPy, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a36108995fd11a0ce86239a3ba8d172c891a7912de0dd59cd1d4a84efd69ee8
MD5 9a03c0b924802150448871fc20318e0c
BLAKE2b-256 0db4f54282a8ba606cad8acac1c6bf7b7b2e138b78039eba99021348776f847e

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: PyPy, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1907e84bd7e43130b0dee274fa36c3ec358ac12be0a6c9dbbb3327f1b0ba9ba5
MD5 a5a749de5132b4c2380e27e5f76f988f
BLAKE2b-256 caf8b05b692af47a8f17146b64d10025ccca2462fd28169c6e7e43d35cb33ae1

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bca465a17aa430f0ecceede2bfc601255b192f43356ccc5d4507792d0cb50376
MD5 21a79f7637b98ede86765682416cdcf1
BLAKE2b-256 7483aecf673a505576c9c8758ed83a34a08a91dee9d2e626cdc052cd9f175bfa

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dc3142ddf31015d226e8d81e224d7770f11e9b0d407e7efe5b1ccb991c710c88
MD5 9e76c17f62cafbfce73f45bce7145f25
BLAKE2b-256 09e42525914898f1563584b3c27d206d716a91df3a5a525d95b5c0ceaed216f0

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02791f2e0e791d2b3c5349b880e194188f15cee1f9b99c3bcfcc8505db39f525
MD5 c97763e5085763bdfd669117903de006
BLAKE2b-256 584ae1f536f0191aee2f7f9677b093b5b2543dbc4406ca2c39a9cfe27bf6c7c0

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 387762c650cf7e3a761d72078290269ca872efc3e2a1cc2015800d403f7ae0e3
MD5 daa84ffec3f1df0eaf231419cafc67b4
BLAKE2b-256 d810a981be9070f7cc22cf8db2706b32c4b3bf6c11d7324ec4d3e35fb8d25cbb

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9301555b9cd37ebdbece45cac2446835874a75e6a3336e0ce1c8c3f3f65a4ab4
MD5 c9e10185244eeb37b1da120d5d110a6f
BLAKE2b-256 cae8206d92c6961731b425ad6ea40d80fcecf6c3c1dc5e3a9b82ad21e11d2e32

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 33f5c3eb098760dde927ac67dd8d3a10b748e91073f1b05ac0988e2ffd00f116
MD5 c051459dbec1d79a8e910d230afe87de
BLAKE2b-256 52e21ff15495af4b444f51cf4feb4efd391a41f8dc13384de425c77e3d56fc15

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cdd78b7a1538a869ba252f1fcfc51e8c85b9e4b48c73101dfcb03611fe1d3f2
MD5 856c7be92e3873a77f4b25befa03850c
BLAKE2b-256 82123b91694a8ba61e155e1c5b51f2a9b9c86c03b06c6cc7143494d577c61b36

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 25d9727a87ee4ee5a6fd88edc31f93e9156041812a91016cc72b3cf5deb41306
MD5 13b12297d3aa59993d4501510dc6dfe8
BLAKE2b-256 fccfb3c5505909c34c9d25dba69ba14c26aa601c34e481c033bb011403aef530

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5fabae336e517d05c714d32c5366abd76a8e967ce2361214bc54e93c2474c711
MD5 298008e8f3a88fe3898f6ddce67947f0
BLAKE2b-256 d3bc9c16daf8a993eebb83d8213b0a57da7f8ce6c79d3b38b08807fd5c9639bd

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 377df49b3fdcbcdcd2373cefc0eb884c330ad970a41f0b796ac9d4633df6dbb1
MD5 ab0297def4e2200de688928cb827aae1
BLAKE2b-256 87085793047edfcf9179e1f17f8b42e71bcdfad5eee590fc224a7c1ff73a428d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37d9dd3dbdae992ad608f7240998166f243035326310dc23ff8aebbe119cbf11
MD5 434687122ac7f2954a93ee2341280e2c
BLAKE2b-256 25c04ef64fb33f1fcbf46aba3b181062663afcd7a8ea97049ef1f8f905e9c1a7

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 995e1005fabe451497e23c64dc29eb15ac7a41433739c7ee9e0a311e61113748
MD5 5b4f4418632cc9b26327452b84ac96b6
BLAKE2b-256 620c3569982300f743679af4061cd7f54b422ac1df8be4a5ce96e37f8db0099b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 6.8 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ba3a03f9be7b2ceb2eca09164a1e9a22c074d9f9f6e58c3f56d7cad5a398f2a3
MD5 23d4b9d47353f567b1a6c9af5a5ce258
BLAKE2b-256 1b96cb9e47d46f994518efddf8deda91ebcd7e068c057d29815ff9d743ef81c6

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7799cf1d9a80348aec98716b9cca08f56acaf3b8e7653dae4076bfc54992afae
MD5 7d5b2c969d1648454442f9a665ab6b30
BLAKE2b-256 eb7b55bfef056f89f68eab33b966c9d095bc71ea40eb7808a375c77a6e5ff812

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7ca07b07e827154356860bad3bc80a0a31746dd39b9c08ad19f3d1e934c4f4b9
MD5 014252133d0ea381024591ccaf013f0a
BLAKE2b-256 3f234636650dffa0dbb38e8a04214499acd6c74f755048fe1489b7c79f7509ba

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 404c9eccfb77bb5065632e8368f1fd09bfb86e432a711a6cc332e63e1cd23fac
MD5 46ef8d1aeb608fbf5d44410e3527f14d
BLAKE2b-256 7a51a0462ff27369bc20e15ae22c42e8ac1f4c82b34905888338b95e58f91176

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e666e6fe9fd51a8ebb1cbdbe6a7d3629701bf2ef3f982b4b273dc0f7bc9dbe42
MD5 7ec143a5720cf663d837c611cef9afaa
BLAKE2b-256 15690ccec8ea005badd4e4fa2f33c717706f6f8e13a1c76a8c222bfc0ba5fd3b

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 231063d395e436660fc070088bc5276f650705b84b567ea7b731e68f283200ed
MD5 a370f5955257dbc26e88b7b5929404b6
BLAKE2b-256 4c21cc4fecdd220a51a14edf7c32b2cb2c8b59eb5dcb3c9663bce5fc67428b33

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 285294ef4b459cc440d19d4442d90628fd99b34d84bf4a647ae10dc8e8950b4d
MD5 c7264acff64782b605d7b5b34146db78
BLAKE2b-256 e1d582ac049e41a6fa66cc35e9076cf3b00304d38fa5a4bd530fed89d6b45e81

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
  • Upload date:
  • Size: 4.7 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.17+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 65582ac7b52b60d776cf7df3450e261f513320e4ba98cc27317f5606e8a95479
MD5 19afd4f9ed87acb923df96eab3f0e4dd
BLAKE2b-256 817a0c306bb4a9cc65d9b1879346f29f46c2cf4732e51df2fe032d1e11e6934d

See more details on using hashes here.

File details

Details for the file pedalboard-0.4.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: pedalboard-0.4.3-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for pedalboard-0.4.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 584259307f97deb8eba5e21312f455022d66e584e04c629eab4f022b68a30153
MD5 8f61dbbcc2327d54144f29c2ad139fee
BLAKE2b-256 6784e044e8e36c91acf93eccd26710adaf34e4dbdc07f6ae4626f48a297bdcff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page