Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for Python 3.11 and PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Read in a whole audio file:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

with AudioFile('guitar-input.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.5.8-pp39-pypy39_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.5.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.5.8-pp38-pypy38_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.5.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.5.8-pp37-pypy37_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.5.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.5.8-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.5.8-cp310-cp310-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.5.8-cp310-cp310-macosx_10_13_universal2.whl (4.7 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.5.8-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.5.8-cp39-cp39-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.5.8-cp39-cp39-macosx_10_13_universal2.whl (4.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.5.8-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.5.8-cp38-cp38-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.5.8-cp38-cp38-macosx_10_13_universal2.whl (4.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.5.8-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.5.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-cp37-cp37m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.5.8-cp36-cp36m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.5.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.5.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.5.8-cp36-cp36m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.5.8-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e663a2a9cf6b54d2d1f0570f673104fbdd54ddb5dcbc8a2e8abc24832fd5a092
MD5 d50b4630d68d95b0ab5a13cb9ef64642
BLAKE2b-256 3867dc1d1b48bcca0d4b48d5a9e3b14f989c179ca3818017e42019aafca7b9ca

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 32e70eedb087718c850b592545bdeecc2f4d530f264337492491ac386a6838fd
MD5 656cab821cb627b70b980b003a42e8e6
BLAKE2b-256 1349252c47aaf4dc3616feaef80824619552c5063790241551351bfb9dc482c1

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c0b2de4adfe97982d136427da65ec5e5c516d0e1f6230954b7f4262d1bb325fe
MD5 05a5d85d5487307235bcaa2bfcfaf633
BLAKE2b-256 3dfa1134154668c3f05e6f84b5cc3a46d8a3de6d107dcc8469be7a22953c8515

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e243aa2e2050064c8860bd677b740406a522b19b684beb5283225a584bdb6e45
MD5 2136b419e7014f48c1f3fd98eea719b3
BLAKE2b-256 f69bbdffde6baf2c614f82d531d62339caa2ce43ac13ad7d313c76f88a22797a

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 40759e53aa63d41e3e00d4e6051af0786e5c5531ff31c7b2a45abb2bbcdb0734
MD5 ff04970b55284a632d65da97cedeea85
BLAKE2b-256 d04d60ba8bd1358ee6ebead82f7f37f0168383ef00efc466e4d4534113712a8d

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08c7f9ea5f4642d3bf94740edb4659273ff32960b1a4b98f08c1bf8855b5740f
MD5 0348e9033b9b6eebedcd047f479ee882
BLAKE2b-256 d34a2e86137410b90c370d9e5c69e9c31e2ef7227da8ab185bd1f95bc03d6a34

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2fd8669b6f4045872f70323e10364e83b7168264fd13c32c2707863c32b475c3
MD5 c50b04fce68451ce49c89956c5043e64
BLAKE2b-256 5e75feb147718cc349eac6cb3c20c2550d53ae239da3ec4eeadb598fdfb6d945

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4a8f75b9de4f41bacf5567966770ea4ad52d193e584f59f748b4254eddf248da
MD5 d780296dc9e1df713f1c59a2ed44dee9
BLAKE2b-256 4e4a72938e8e1260226dab04971aaae52f211866f08715b29e4c2f68f3f5b7cf

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b8ac232b3cc1b4f9e8a6cddc056980dbc9be592d962beaa53e1edb6a29b3c283
MD5 e510a03b7b7e58e59af4b9e99fc40f38
BLAKE2b-256 4dd2759e7947731b5299dd1e2f37b68beb61ee9802c487b0964cb49d7c12353a

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77afa5c557cb94b55eb178dd0f8cb9f9e716dc2ec9b89c0251c7168098b93f19
MD5 70349e97c7e30168ac1574902410ff0d
BLAKE2b-256 198c5a6c582fc0f530cc6befdbbadd169af79eec674856b6694c8509bc3cc2ab

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f7f5e7724d9b199b71fe6355dc0f6e35fc5d0c2e0b20e7617f9bce988244de71
MD5 d8901ddfd32b23e62f665427e2e7e3c6
BLAKE2b-256 7b300ee3080e300494668d40b04b4804ef5ef5cdd7b9e071a34da11d5d328435

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5b61f8d5b765dfc452801885769a3c3f29cc6ddcdd29adaa82c0108ec0c4373d
MD5 9b4ae6da851d9ee9d9c5f51e6e4e663f
BLAKE2b-256 e73e8727834b838566ca89b1df8f2e3af9ec8c622f835db19aab051d48146534

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6a4ce4cad99fca5ace71934d91df4a65cc36a4ce23e066010f88aa5c8c62970c
MD5 bbe9302e165ed1aba2b06e45edc0df46
BLAKE2b-256 bdbd5dea87b63e47d62701ff2a69d528300a7b573958f34285efa9fa4dad79bb

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d1909ab10d53d2cfb9fab940025dd44441a32728b237dbadd0393ece59f441c
MD5 86008a552f237744a8620c21516cbe3e
BLAKE2b-256 62d96a1041ccbec41e95195cd281fe3d522b0c5022daf73c5b8f1a79f7880ebd

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8663aaa53baa98ab37c6afbd8ef84804dedcdc613a69472f9981080300e53f54
MD5 b0a367dc6abca42f54137d6e5b01df03
BLAKE2b-256 d5e5314abd5d17efb75e23b8f89bbf34ed0ccd6251abc14491ef293ccdaf32b1

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4fc654da1ffd7278b445a503a5ab0bfd61c5c1d5f72184227120162cada64d6
MD5 fddce2200ba5047469caad284ad8dcd3
BLAKE2b-256 3bf58cd9b1bdedc23d49ec58c051265ad9056742acfaf37ceee418cb7389eb8a

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4f6d509b1477babc1b7c54b2ba3f68dcd60f8d4c36d8c32c8c17aef6e772fdd7
MD5 c352eeddace31d556258ee3cad8983fd
BLAKE2b-256 6094576144c8de96626e0057f532f6b4fffb9b3a5908c783c066f45bcef636d6

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 78e3aa9b32f26b2f9c73394dd657ad6723706ef8101036ef206e536d30c99887
MD5 5578b75840536f54abebaba8566e105b
BLAKE2b-256 46d3c5ee85791788961c399e004dc9977e28a6f5e0c73953d58a51a2a58f26f1

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df30a00238022a2d8d8e8db79e4755f1de2f2578b46e147c40def0ff273ca58d
MD5 ce13bfa5a0b5eebb9dd5ab4f4bc5811a
BLAKE2b-256 406854cf79314cb5a8d1c3bedca9347018a3e5021d11c48d2532b15ab18df634

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac20443bf528af2057d9b780d9831cc9ba78fb5a5869560fc6b14e5fb15bd826
MD5 def465c1b1d20c10b33c2db18524df35
BLAKE2b-256 7a9a738b53d9fafcc965b5af9f1ea6af271f512517a051914823a9e26ab8a0ab

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 80f6e124d2a8b21c254ba9c93fdb19746f01e74da609988e104c5eefe4ed4780
MD5 fc90ae626e4d6a30580d1b85d8116dd5
BLAKE2b-256 98cb7ae96977afddb5399e67380fb5d4290a37bd49e0912e04ee162eac5ef90b

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c48bc1422499155536c3eebbb9bce38830dd07e57b6481be55cca60a6dd52f35
MD5 ee15c2b06db108f65661788aede40ec9
BLAKE2b-256 469e0becae880518938384fabe1e1e552763666a387014b0ca57a313aa122b5e

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ed187f3a501483a71e377d29d7063a9342dfde3f416bcbeb309b5c8a2705c047
MD5 ea5a62c03ace7e9c859eb1eb841c391b
BLAKE2b-256 7cf37981675993ae4c4efc2a72e655a9dc59c629055853867edf3bbc66c9a028

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e01a8b76871f5ee1bec235744bb0fdd0c71f914ed5f4b668fb9501da578b103a
MD5 7f285a4dc25f928a1ce974d82ed02045
BLAKE2b-256 90dacb41d76de3300df383dcdcbd3bb6ef9dc6caaf73c4ffc8b78edec21866dd

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5d28371e07c8c80da9db1d0a08fd87dd574edbafd0c75b3019ef1c6553f9971f
MD5 b2ae15be3afb0fab9104d7745c7aa4c2
BLAKE2b-256 5b0c879e6fb05a5609df843f9bf9ae398a8a165eb46c84a054fb38375ee25524

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e2fdb7069f22f129907b918d7be26f7b273964febf40264dcb10489c175461a
MD5 df672b58e197f266557405b99b5b455b
BLAKE2b-256 49a0c9023b42c092f4952259dab9498ee5f76b60ea2b614cf09ca25e1bdff576

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9495d5ec85f8bdeabb4db83ce57bd284a61959491ba769fdce9c19097af01862
MD5 f256d72bc905c1ce1957c35d1524dfd2
BLAKE2b-256 0494687cab661466a137f025d605c36fd0851789ebf2a7b9a50abd41663c9c0d

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3089533ad0240f0ea1a8824cb526ab8e4e7a77a9565cc77e1cb4bb83c8c74d0
MD5 7f0d3ff544f897fc32025b229c93e62a
BLAKE2b-256 f9bb3f0e1454e79ec65239e3385ec287cf1955ae559716a6479220772051e3a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7bee5ca30855b09c68ad8c7921ceb2b695282cb65a1f6a38b20749bdc3bb3201
MD5 914ac6b66d4f1b6424b8f20dc808bc36
BLAKE2b-256 b591c7bc0f8e7fbd4dd25d452dce5fa2893ec785ec3c4946c6e56e33ac2dc88c

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4f8394c50680128289976c7ed65e3946aa1d8d46d5fd54c1bb794712215e5d1d
MD5 fb3e25e65be0ee7cd24023b2a777ade4
BLAKE2b-256 92aa76adb3856549917f1edac7742c92100393854449a6d34744494e152e1f4e

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a5a9d1ab4a099cd8509cbe9f4c6f3f917f52fc90e3915b10af9ea4a404fba06f
MD5 5a022ed4e0b5471cbd46114f8a8647e3
BLAKE2b-256 86f234d1840f49feb0c943f2b9eea0c2ce1187e831d54c2bc389da5cfe5d2aca

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7576531b08590aa09d298ab1d33bfbd1239c70464749840d6b943e4731ca2912
MD5 62f240dcab3aefd4743230ae892a19be
BLAKE2b-256 23f54ca6ac841237d6c3a1e520822eadad555c536c6980caf674372ef55a55fc

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4aebb62a8dbac82f380797dc7f6159ef141709a7da944fe8d64b2d9242255c82
MD5 c22108bdf5359f7306c3a4e8abdee478
BLAKE2b-256 19aa257abd66e983ce9baced5235b7caddc70daabf0871318595b81cfe360b05

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3b31072d0f05051a0378afe0f80cb84b270f1e2d08777a673adffae337aff936
MD5 9dbd220a81ee6a0ac202f0b675666417
BLAKE2b-256 0bf400e50f3930939a82d82ba947e713a9c90f69b91f7d8ad5807742750dbae0

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a927a24d20665f7c95082284b89bc0f9a1dc8916709eac2989464d0da19d6432
MD5 55bc9ef113005810fe17e84841144e42
BLAKE2b-256 8c7419ee2c77933cd400658623a816a25e8a40e72a70dbfbe7432092585ebb26

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd79dd80f6ee789179d544aeb0b4b5401232e0953c0ea43c82a6fe27156cc165
MD5 bd368904c10c1bab34e4813ffe42e426
BLAKE2b-256 ee151381e5c1a5f4e2dc2591a13cc8ee8da083c081ed6c4ee68ace4ace3142ad

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2d291f4a035e95cfa6c6dd135b28c7aecca92e050c8a78e2f03cb94fb968165
MD5 fc17c3ea4b11bb93d729e442aad8d5b1
BLAKE2b-256 18ddfdf8de92444998edc98b888db4ddda53c73b9253fff87008f8edb664a4db

See more details on using hashes here.

File details

Details for the file pedalboard-0.5.8-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.5.8-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c39dda33ab8e254470d3315bc1b3217ddc854ebdbdf4a48ca3bdc7643902eeae
MD5 c0c9441860e590364f15fefb42a24dd3
BLAKE2b-256 ee17afa296beca4fb6d10200121590aa033beb59d432151abc4ade09198da02d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page