Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for Python 3.11 and PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Read in a whole audio file:
with AudioFile('some-file.wav') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.6.0-pp39-pypy39_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.0-pp38-pypy38_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.0-pp37-pypy37_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.0-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.6.0-cp311-cp311-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.6.0-cp311-cp311-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.0-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.6.0-cp310-cp310-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.6.0-cp310-cp310-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.0-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.6.0-cp39-cp39-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.6.0-cp39-cp39-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.0-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.6.0-cp38-cp38-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.6.0-cp38-cp38-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.0-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-cp37-cp37m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.6.0-cp36-cp36m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.0-cp36-cp36m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.6.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9711412dfd65d022f05a6b324331a172981c293cf181a5bd795f513732fa352e
MD5 66f92ca9a05c38ed1e6bb9c9d1bcf07b
BLAKE2b-256 4663e07fce4320549fa88240590d5e415d4fbf5c4f9bcd21399443a5266627f9

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad952a0e4d076c2d882c4ea3e19cce1f1dac07cfd396bb4dcade7c251b6b1589
MD5 8b62bc0d81c96ea66a83d7b065b088b7
BLAKE2b-256 0e7e30f41ba1765f76dad9a86cc301bd8bcc72c8ddb2c999c6c18c42b9d4191c

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a8108b2473d05d196c2429d963c4bb515dc51bfbf9a42ef4c44fb9d8cb5f9bb
MD5 a04f7080fb4f83a45b8b4343dff02f19
BLAKE2b-256 fbe85e1165adcb9fa9ceab49a8960665277d8fbc0c651f2124bd2a0a129dd3e1

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1c87e665690a8769fe19b6a37c4d3a885abba6df03638c608e0becd3c8011ba7
MD5 99887e623481958c3b3e17cde2b07c45
BLAKE2b-256 61184e46280f1b5dfb3fac8dd4def564b29adca1a33ae2166fe045f87be006ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f4691bba426fdd6d8ec8783bb2d104d99ff85db1baf24e7c7df5598df8c98c7d
MD5 169301f5bc167204258b25f0df4b7d86
BLAKE2b-256 c275b3973424c5a6bf4ad53651a133f8313af8597d3a7169f239d5f237f86fdd

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baad9b9752b3f66cafc630d2fefb557d8f1da5f1200574d404ae288f08f94571
MD5 e8b169e708c606f9f6474b1a6266bd4b
BLAKE2b-256 e601016f67edbf648bbe8144d9f51c0098b800da436c20c07dd3ee750c05e827

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0d4983037415d2a119f721c804074f8a73524223ee09a135384c4dfbc6a62d4
MD5 43a3238b33e2ad4dfd15c25732a74215
BLAKE2b-256 a31431f142fe0d909dd16687d353cea02cf72d0fef0b4af7988c02d9047ddbf0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 207b3028f4446602212bb695766a7b14beaae9096a6b9b8b891538731652ec0c
MD5 a773aba77dead943bfddbe60cd6c32ad
BLAKE2b-256 c96744d2d50c0628de21e08e6a88d12c0b0c3757e7b6c61c7ab453417f2b7d9a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c1dad9fee250fd7eab6d007599484c5dde72c44d9940df00a23910f8214ab755
MD5 853272e3d2e2750cb950d08dd0950af9
BLAKE2b-256 15712334f25d37a894ef37960942b43443a3280e226d51e5b415faaeda847d0d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 68636207a945b15c80636d0e56f7d2fbbc3970478b2c0c5f94a132ed4d3c7d23
MD5 6bd401daf5bd17b4a97b603025d0638e
BLAKE2b-256 21d62523e51ed732c8615fd910def417c71b4786d5f5dbc72a6c640afea35eb1

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fda3dcedaca796a9c6359e39630b0e8c3572a8a099f568e9b8968905b7e923c8
MD5 ebad75aae7681502ebbab1a0fa9a21f8
BLAKE2b-256 b9abf98b59cf8c7f857978a0d5864c20738aec1d04b8e35423d8d2fd218ebb02

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e0ff272dccc79c05591a38506f1732e3b8b554d839dc60b4d2bd9dda400b40bf
MD5 a054386f2534cfed40602d32fe82e855
BLAKE2b-256 f58e65d14133669e5937825f74411762b2f6a141fdd219eefdf8c7a7a841ed62

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5654540cde7f3759b4cbca9867606be0d45019a3212abf705b1553e7c5c981f5
MD5 e3560abf92d68f9e8a8c33ef562f2ffd
BLAKE2b-256 c74bfc77b398638ae3cea5f02b897897bfb661a71f4cfc935a1fbe39a12e15f0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d5c60ef3cdcda53020a8bde9fc2e5b6de60d2db2aea2c70f0d1352f06bec065
MD5 23741ebba0f2c22a0901a5050f9ab8c8
BLAKE2b-256 331b322fef6b563d5447301f0b5c803760a4065a11f357f2d68048847874f906

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 832699d40f393df198296177b20612b956bc810458059cb0b86ca6a240b39c71
MD5 8fce58275d4559fca2a167cabe453b6e
BLAKE2b-256 b95743565e8ffb9179fbb6064c4cfa3839133c772729e5783dc69958490bbd06

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eda44ba348d9d8ca95979ac34487326154a0b4ea96b9b7d516287c807979e228
MD5 194889010e627b5929e7d933cc3b7d67
BLAKE2b-256 e67f43650182fdafefb7ff24ed7e25464d00d887d14e9a74e586a562ffd2bef0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d88f8a3d92d4e20102c87575c976f6a9e25c305be87539b0c329f9425592347d
MD5 499ed25376641bfcd67d8720e69c1158
BLAKE2b-256 330b3f94d92742cec5e230294ca97a954206597b60009d037e7bee49841866ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4f55ce297449c8dbbd0e380aacd90831f2c77b5dd3e15d1ac20ba38095e4283c
MD5 b91befce09ae81f420309da30ae3f181
BLAKE2b-256 685d7051b61db421435656b63b5799fe02861fc23dea1abf208edc23358193c2

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 babc81ffb3921ae155103e6a12af4644e5d6622bfd6d579e108035a91e7f26c5
MD5 d3e1edb820494b0a6f201631032db13f
BLAKE2b-256 89dfd5fc732f9b72e6e0c01ab9d6d8710069135a265e3002959dc06963a0adc8

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d24d598f06384854096613f8142c83ad4c64eec95ca264a34935849e8fe93f2
MD5 c7bbd9579fecdc912febccf27b1e673e
BLAKE2b-256 4cec2897d8cfd0a31ec2308ade44cba9849a2bceb4509e4b8fa34e9e1c78454f

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d152d35d79c0abee10a6d6010aba8c5e52477577020aa7b72cc912ea86c27b70
MD5 fee133829118c998260b37e6f7b59df5
BLAKE2b-256 69a2bd1a7a1960eed0d0457b8d70e167f56a3c8a8a3994fcd0855a441ba76ff6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1cf8b72613d672acbccbf3caf118cfb850cb2b5f882b5500c00ab34fd8d20392
MD5 336d177f8f5274ff47c67eec19fbb7f8
BLAKE2b-256 d3fb2df72a89200c352422db17dac8d523f834b9528df47552a3cf6c95ffa18b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8f3299aec6cb9b69a6ffe6541bbcf26373254ac15fc534b555a934195affbc66
MD5 1e0eb5a033efa2b05bf27ea1f9d91e8a
BLAKE2b-256 b836413ecaae34ef15f0bbdf90016a019dee4c7bee14f61170666f28a3c8c4b4

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 9bfff255bbd9549984fff88318f9ed8024e8d779cf645433abc4668fb3c7387a
MD5 00715d8579c8072a799748757619859e
BLAKE2b-256 1122ea573fc989e4bd250807c3a8748d059c5fe6721b80967a03952b3fba5f75

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 17f64d2cedb201be91e1cbba292275e8d35795ef984aa2648ec6e8a5dae5d18e
MD5 94b23d2a6c5e3b217705a06581d385b1
BLAKE2b-256 8d6f69db005bb0c238427abb3e1d8b16e2e9753e81b685cd9108eb7ad9d5edf5

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ddc1737e6dc7bb224158795cccb3d806d68bb299cd5f7a05ad00f70c9ac63ac
MD5 ed6ed32d7c74f9ba26a5d8679a9a0468
BLAKE2b-256 146c6b9c5f370c467dfca6d7a0c3f7e0494c31b1f0c8c7aadb8b9fd05c14be1a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04532033a22949d0547e27ff5d54fb6a198b942ebf0cdbef1cd85f305cdf78b0
MD5 cebb09d14849d0d1474c637beb8eee04
BLAKE2b-256 08b67a85a3e9738217b462e870538efdb22ca401c36dd01b4897e77c498e3e6a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f9dec9721ff67e7cc2332d980ffc819a3b54506f1187ee77977f3ddff311bf52
MD5 6439b92f9306f109c15477aef573dfdc
BLAKE2b-256 496f2ed7ef71cc2d329e9418e1b7304865a31ac4073425877b096212c6c15101

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 514f84e7517898d46ecc286d2305d815971b1607aa6e475f1f72a21d926c2944
MD5 16568f789684ee7ae760d22033c03e89
BLAKE2b-256 b24be5ca94d84017c960aa431be6efd7e41998c6490431c2aec359493e3b8714

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e42d4a066e467886073e8d48b20dd6a06a7d2b34bab02abe3227d53e17dc3cd4
MD5 1b1da5177288241c79965bb3af6acef2
BLAKE2b-256 16275033709df222e51e28046711cce4a7fbd62ebacc3d869f862d511b177441

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2947ace07812c7887674a2c36e37775544ac1d9c702523e624bc9e736b264435
MD5 b3b818984d34fe57900ee0e0e7e1c863
BLAKE2b-256 356436d8cd394866d39358675da55184d55401de9257abb4e6707f52d239aad6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ae1f27c59635bdc101884308b4c66ea01e15051d2e6f68e737247d2a3e2ff29
MD5 0706dc99925a7227fac9258d40c81069
BLAKE2b-256 164f417c7012f87bd2fafcca498d1b985cd734f881bf6aadfcba724c191d3ee3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 be4552d888b6ab2072d13b83298a929f6a2f5e8a8d5d131d2c2823efac5abee5
MD5 d6c5078a78cf6c3cb303a3e040f525c3
BLAKE2b-256 a2a8f96c6ad57f14d3c4d9912be6601395a7787eff7dcce1bde83b6cdd573887

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 945693f54a9926cf5b2539abd1c2a741bc2b933fba5bc797a3aeed46420aa280
MD5 d8f08b0417de4c23ff64902537a2eb24
BLAKE2b-256 ef51712fab029ea78028d3fec0237f675da558767431583914e4d3755e5e7c1d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f29264a2a9010dc6a5c95ef00081c116239646eb591e37478d53273dc3470134
MD5 524f9352be51779b58d08dc938b72ecd
BLAKE2b-256 193ba40da834f5f65687ddc6a921e702ffec452530cbc3d574810c1b3c972799

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4a433d00826ca0d98bf0fa7c5708433f4726e6ffa2fedc62851a3d6f1b41d87b
MD5 b8167b15ea1d5aa94e5096c89f848fb5
BLAKE2b-256 43c237e9f58e9e2834d21c9f8d3b314c1f13777f4adc9cd026c4a796194353c9

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 6bf4e14fa1c971ea6b8b99910b5bebc925bea00c7dd0da735260d4adb0ebe42a
MD5 24579bc3ab386f8f3f49d909a8702154
BLAKE2b-256 db70f06de50ac88201aae145ad853962a7df4d77acf57fbaea4eb626d3985850

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 932ea7036354f4c961d4d572a5b19caa93529c8e2523b1bb818f1a21813df29d
MD5 21d1e61c6888f2c2ef21f93596d84fe3
BLAKE2b-256 db5f7eeda93a59aae566d4e8b243d03c11929d7ff781f9766b2e3d61bdb2f438

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3d55fb5f92f5791ce8ec04c59ddaf5ecf4875a3646a47cdb57e50457201cc806
MD5 50d4ed9b26fb177df300481019f99b4a
BLAKE2b-256 8073c8030023c99e907e5871bc12fc5518710ab0562a08dee79c6963b6df3ba0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2b38a46a78cc77d54c78c37eac0cbba5d4201ab4bda34498e38779fe4b7d3343
MD5 e23d5d03cb55e23b61a839e2f8535577
BLAKE2b-256 49969b3697d5e3fa3f8313da0a4bdb6fc6dcf2ff61af5b66823b51ebe429c537

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 286d7094d932a06116231badd480d528614b2eac7eddb73d227b44d47fa38238
MD5 1b464c38f5d455bf935150e48b399852
BLAKE2b-256 86d899f7d74e4b7492eb6f981f1adbd38c1d754f521524c2a6779a6d81c91e9e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7102ec6714f9e320477083de88b62db7dd45973e3a5b301f98215bd599215231
MD5 f368e7cbc6688e6eceea0f84ce6ade08
BLAKE2b-256 af41231e55e3a77b1005e433906b3a52955041fd245e4d7c13a03adf70ad7fa2

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a3365c30e5de98e25c6243354f5723c8e15850ebfc1408baa31d429857f945b5
MD5 a1cbb3f54006924d00af8a9234da7160
BLAKE2b-256 b21fa1e3d87693b00bab9018af5b2afc405984ba7b589618bd470a4c208dfa96

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.0-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.0-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 838e2f00bf605dae0e16d89f347b47f200d20b61f032a76cec30914f8764b9fc
MD5 f19cc14664ca676c6a14916d6b7e6693
BLAKE2b-256 d165ae372ba6f4dc24dd114f25f9d028929784e77057d977a50e8907300df471

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page