Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for Python 3.11 and PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Read in a whole audio file:
with AudioFile('some-file.wav') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.6.1-pp39-pypy39_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.1-pp38-pypy38_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.1-pp37-pypy37_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.1-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.6.1-cp311-cp311-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.6.1-cp311-cp311-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.1-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.6.1-cp310-cp310-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.6.1-cp310-cp310-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.1-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.6.1-cp39-cp39-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.6.1-cp39-cp39-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.1-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.6.1-cp38-cp38-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.6.1-cp38-cp38-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.1-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-cp37-cp37m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.6.1-cp36-cp36m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.1-cp36-cp36m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.6.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 15fdfb6e0e379676be24c4f9b2c3bfa412bee9cf591b700f9b1ff7431832f44c
MD5 3955fb81a9463553a981191973d2c957
BLAKE2b-256 073703495ea49f00b311ffc521d2a62d7f528fc51d081fb72237fee18d9411fb

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 824db5ca1a2c2f338f278c86f7a8a2d0c1caa1f90b0ebbadb5e332168ffef288
MD5 8c14a94419253f69372fb6194a24b068
BLAKE2b-256 044d8b9fe528a670f0887be2d8254789f5973ed1d15a8b7c3bbfd200db75de00

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0734c58babf4b09051ee281d6319196b7f8b96cf06fc1c850cdd6e312d2cbaef
MD5 bf7e0defdee5a2a38197c4a60e6b1d87
BLAKE2b-256 759a0ca61f1d99390d7e4d62159c2495da6cc88a7820daa789855a741bc5cacd

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ce33eaea844a2d1306707b1638c90e4081f353a0cdf21548b6ba045de0b0f051
MD5 b38cbdb605f297654c30a4887995384e
BLAKE2b-256 81c3bbd8ca49675becb4bc8bf7d070a22349a1fac8338ed9afb2dacc0467e27a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8c82d169d57fd028ee51dacbc8acaca4982c9b6712eb8e9b39202caa7b0bfda5
MD5 5af5ae62ded41b7117608e0e2a11c457
BLAKE2b-256 29b6a73a9e549553124934230f7024a981b30895a46c1fa59acc2dff3ba26713

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2a1bd3e8bb71dbf29f081be325f2ea8eaf7be55fa0bd5beec6dc0c00b1bf43a
MD5 6ddbf27a3c7b1ff460bc68488344804c
BLAKE2b-256 cef25a5d3034f06a4d83f6bb7d4f3dd94615206f0752a9e861539f17635485b5

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 22e7537fcbf6b6632f9d89b30a2c769948c35cbcc06bc72e0eff9be341b976a9
MD5 169203681eaa026b0fbce0f1b8a36b71
BLAKE2b-256 6b2db44dc23b36bee32aa5ee99aafffc55967109517bfe4164ae78a92b16f76d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6dd77b1695f61dc267eae95cc081f80cffbfabbfcbe44babf968cc40f8b87717
MD5 f5ce57f81bfe22e77bbd15276a824464
BLAKE2b-256 77ef86d7116af1daf650b7e8c44fbbf5054a21d9768c3f12a02c41d76ada4e64

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 45eef70b7c416480bed4fe995426d49387925fbaa5a921954f99acfe6a0ec1d4
MD5 01e34d6caae54c610035d699f1b9f950
BLAKE2b-256 1008d75a696c3a5ffcc5e74b09b5f7145d1459e90072a24e1eb959c693906654

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8272d7e85a0730bf7778bc331541899854437425c30be76a48c203f27606dd32
MD5 7a65745501455db127cd0259e5f89d00
BLAKE2b-256 502f9df6f7301734c3f4e3ca00fd75979e982e618cd12de224b5306b6004cf8b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 db42bae1b8064e30b6cc75082b70ec7dc3ca77d4badf480a86de84cdc1d246b7
MD5 1e55b93bcac552545ef16d41443e5826
BLAKE2b-256 a0071b248bdd6144b8dd333fa3f01fa996e79b9684d7099c4f75161ab0b85fdb

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 426551284798bcdf645ac39ecff93e4ad06767bc98efd45cfc2d5adba4179308
MD5 a917ea609c411c6f1942d3e0c1ab01da
BLAKE2b-256 b7e0100c638591932b19e08a8c552b3b01c40c6ab859ade5f13cf754125193ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 65710f95bc42121ee90ef473aac4804b34e4c749a48f3557a2511eba044da55d
MD5 8653e4947a17acdac7904aac0a6570ce
BLAKE2b-256 935bbbaf753bdbac6345b26eef8f5f163ba44a77562ca718eafe179bca0d7372

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0629cc8f9b8df1edaa893882fc65224aa3cc193e3c8335481c75ab06e3bfdae0
MD5 f06b5997cb555fb84e504cd949bdd42a
BLAKE2b-256 f825ce2d971c04a9e0f168dc972b79f74bdf080a6fd44436f92332116426a703

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3509651f6476d09df3372982202ee2c1c10ee21bbabbb33a0078f2e7b5b42010
MD5 1ec9539119623f613e578648df7284be
BLAKE2b-256 e6b32e8d2c224b47e37b899a2ab18993e5bca416afbc8dfa825218c2477b4c4d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11de5f2038062a3e5d44f8a163559ba578de2650ea7c0b49780218bbacb13303
MD5 475b2b0542c820e334a26a8eb19ba06b
BLAKE2b-256 5c8c77cc2acd37910773ad166457f6f18fa29b6ebb1ebc8c187434447255ae43

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2db7ab306affd32253df3428385d7ae8202ab9902903d3b1e46c10006cba7394
MD5 330a969243fdad780f5f91c12ce33ead
BLAKE2b-256 899543c787e93d67a9a100101fe93b95f26b950979836971102de5699403fe18

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c6890293fea447602340be49b2249bd1739da1d0212816a113dfb77aa8f00ec8
MD5 97aad7b3c3329ae8fa3742c759200363
BLAKE2b-256 58bb2f81838d8b3ae64e278cfea280cfae559752d6bf9689f2b50186fa5988a4

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b9791e305d810cb3d3de2e54105d71e84491ddc83e63c82bbc062bbf74de607b
MD5 d3d42ed9fc0607b8353768fba1d5d3be
BLAKE2b-256 9685ff8256c7d3598fc667e0aa0d1a58cd39884fb6f282751502d3265516ac03

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a051f2f84477570f3691f3861a0a67750cc93755e2dac3c21983b62c239c5fb1
MD5 967aeb379ee657fe1008bc610d1639f8
BLAKE2b-256 ab6517494519c31f8bf54326092aedfb927450b1424626f28ae71416112d690b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 389f41849ff7120e3738f2677d2774d33d9017dfb54e8da25cf6a6d5c78be205
MD5 f982487c4a01ba66d447a150b907147b
BLAKE2b-256 23dc58b77d21ec61482bb0def4fdb26ce44deaa9c86d9a59d68072f793521b51

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 632d1949271c7e115c3cade1d16ef6067b2107d7ecabd045497498da036b16e2
MD5 a8c94fa20bf5a0a36784e5ec1e1f5065
BLAKE2b-256 e14cb49711bf88a627115bd6fc79bc9dcc214333ef8de419f08052167206c45e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 52bea171033cf068555e8a0243f67623dd914bfacca0897e9b955c219c9bf3eb
MD5 28e9af91b0d15d50aef0a7f66c23d4d1
BLAKE2b-256 e6126ebb48f2c200bf9ab5f277855856134b493e8e20522899063c649a0d75f3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 4b38bfd8e1b6e49b06ec6ad6c9ae3d53528808f4c259531deb6bd96404819e70
MD5 44616b9b4465278d26312d379dd2c2ef
BLAKE2b-256 a32b4d9790462a3885c25033b77af40e2f51a41086c284631f2dec5a7d64c353

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2f0d06e24aaf6524cc5af7e6bf11ad541f4f16912551d539e4a79aa29af83d69
MD5 87c0d1172aba67b176309b6ffeecf995
BLAKE2b-256 42dc42cf0b0cbd66211959c44a04bddb2216345ccdaab7c2bb4a821e623a8b57

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 86df54abd6a665142e9069c61bbc7dac64f202d8ccb7962310c4b7bc031fd215
MD5 62afe90774840a7ffd213371128f68ea
BLAKE2b-256 af6a82308f4d7ec8e76f16e488c1aacb2f6f3538189a475612b0e88c379233b3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 72a69d48312ad319ec020c850c7584e894b961f6b10f4225d4ada6e164b88a03
MD5 7b06c071c0d877d373bc45182a11bb75
BLAKE2b-256 82ad45b4de914a6dfc61b2abd93fb5a3e75d0a06eada95460540b8a1c3d4820f

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 13b8728e6e2fa1065ffd48b52cd1f65399894473ae0ea87d717723714aa647a0
MD5 97acd5deddf6d2eb60fdc2078e66fb42
BLAKE2b-256 1cf5f2a1c16e1b0698a29237e7fb7cc8972571aaba5c24dd7983f2c47603c540

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2130541c823be8a987a8ec5baa9a9c4b1c957af6fc7c0bc0cd29d1882207c4ca
MD5 9b2ac98bcef734489363a65ba7c85296
BLAKE2b-256 5a5686a4c94d6047c01a0920359386e891bd4824eb9b5e00e851de49ad4e696e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d16b14295420e71a66854495de8919b8ae69cefa0c9605eee4d486bf62af478e
MD5 7455f9264eb599b3d293736eeb92113f
BLAKE2b-256 d7ccad2abee6cac3a761c8dcf6798d99960076c89e398f70525d7671dce71c00

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cdf9b5fbc00a46c689190b2fc3f3b003b78309c55547762fe7c98851c4be8199
MD5 f052922d0afcebd62835dc947b75d926
BLAKE2b-256 91e63288dd910ffe50525d9a9d4ec57ab48a889c983b7d1c101e3612d793380a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0cdde3e12362403d45971e6984c88164590b3cf8caaff54de3109248746cc5ef
MD5 f94edd821dd71cca7c209f806939d01e
BLAKE2b-256 50f1cef8fb6320317e2510f820db7c7cb8cec6151ea1067fadd48e5f144eaa43

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df9dd346a88242ff9e12fb921c0e9307bb239ea3af0a5bbd31285a50d6dee901
MD5 1e60a501c213a962d0771ece37b51c25
BLAKE2b-256 64f644eec392eb2035f39f74806483a8626925e857326d111a15e9c26d634448

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 940cecefd7ef1b9d70963b6e851171b183f5f111f126cb6e542be60b5c8d9432
MD5 83d558a0f4d55529340ed57d3a39ee0d
BLAKE2b-256 fdd4f08b4b882dfb9c2333986536290122e715c3c62403106442bd58e2a821cd

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ed7154fdcc72b6c7f69fbce2465fcaee202080855cf8cd314e926d076266ae3d
MD5 ff66ab09d5b9c12f158ddb41005370b4
BLAKE2b-256 75cc6e60e6b5902fd6d832c68fe0367e426e3c8d157f8a04b96f1709f13e8497

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 438cf313971e710963b3119a85a9d5d6548df800ebe31d951a6b9ebbf3ef175f
MD5 1bce0d52b139d5baef997e83d2851b99
BLAKE2b-256 9ba13966f989b7d55bb3e3d0280fd681fdd140aded2218728315a3e447fc3ae6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 48b572fbd70991ffca64677c38c90f231cfaca9478b7a87a39ac75e0583d8dfd
MD5 1dfc7d72b9bd0552804b2ded0697063f
BLAKE2b-256 bed334236ae7f9b7852644dc8a35518a1bff54816800a31aff2156267cf6896b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41c7bf488294a9cbfd06dc85f4fa130f6ad1bd7eefc7056dc6e4f0b2fc591361
MD5 cba73d59a78662bf30f7c4368846d3b7
BLAKE2b-256 4516a72490ae90b6558a2a45b33e941cfdf5cad6c47e18cbac8697c421c98af9

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb4a0d1f154aff1494fa16e38e5f8b63525d8f769caad604cf5aca41317cef89
MD5 f2867f82a691e513c9cb6e278f64071d
BLAKE2b-256 6bae3b45467394ff38c0d352905aa8cd61865ad8c0e8e7eb0d74a31dbadfa4fb

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ccdaeb90aa42a24d8fe3e1ddd6a27ba58896cbfe2bc35129d24dbbd059179fd2
MD5 dac8313cb04a335849344f1f207ccc5d
BLAKE2b-256 2bf5341e1beffd1f864f38a6c61501b2228f1fb8a0815e5c8c696ac53a35557b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 aaae83e3c1d93ef85597a2253a7b40712611ff57c301543fdb466a5cb5a33dad
MD5 2ffc705a66441d90831df852a889d47c
BLAKE2b-256 d41a1a20f8fac6e56019b404e9e3d90f41d7d129d8b4054cd78f02d1309e5de4

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5526ff6bde0e470fa1e517ea2f4078db96a1079b3461877eb8b227a348ee5696
MD5 7002347a38d8f8da49ec9bc060aa3250
BLAKE2b-256 61be442e7629b954154836fb7569b82c4e7e12c234662057859c27f660a4ddf7

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf128651c2895427e6523e226218c2a6c20543d2f300f86776ce3ea9c8e1172c
MD5 8e81597859d7052bcaa6609b828d0a63
BLAKE2b-256 a4139c4bd1b236c9df8721a964cc0f9daf4624c8997865c9e0138b4d727057a9

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.1-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.1-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6a3361e906dc1d1f0d7d9e542865f1eb044b8d7e6a574898b825916bc7494d48
MD5 7e664e44f5ab92e3ca36e9e580cff815
BLAKE2b-256 c792660297a1c29be6a2cd82c89c2d89cd1ddacf8560098ee549befe3c367cef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page