Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, and 3.10 as well as experimental support for Python 3.11 and PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Read in a whole audio file:
with AudioFile('some-file.wav') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.6.2-pp39-pypy39_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.2-pp38-pypy38_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.2-pp37-pypy37_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.2-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.6.2-cp311-cp311-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.6.2-cp311-cp311-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.2-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.6.2-cp310-cp310-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.6.2-cp310-cp310-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.2-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.6.2-cp39-cp39-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.6.2-cp39-cp39-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.2-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.6.2-cp38-cp38-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.6.2-cp38-cp38-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.2-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-cp37-cp37m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.6.2-cp36-cp36m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.6.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.2-cp36-cp36m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.6.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9cf8c2e95ab43c2a2c3a5c6cc92f985b2ba24bb95aae06ff5f6fc7ac030d60c7
MD5 7bc94340b9353e6442fe7e6393887f48
BLAKE2b-256 8536c96930ec27d50bf21da57a95d686614c4e1c5384e687eeed8ef3d2437299

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13a62a1539e6ef39f0b4111c5790bc4628319e464a5401ec5e42c3201ce988d5
MD5 db69e17d0ec05387fc08a4383fd477a8
BLAKE2b-256 1bcd739f97cd735f95ea7c1f7404c5a116e21e574115cc8e4ee52444c24d03fe

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 55b85d91bf77dcccc18c048ea4bc7ea996a6def1b980db5b4788e8500ea90e76
MD5 0d2157e309d5b13930f0d0ed8dd74912
BLAKE2b-256 e1b8819cb93457ef7619d3d5dd95af668af2552fdac26f87bd3059985a917107

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b8de271fe7977dab6a84ec09b52858852cbbd17f2642ad2270fd5c548b14993a
MD5 5deb269b9259ea4fda19be1c9a23d894
BLAKE2b-256 7539c4a98f099ca3f46c735c3c2e4b380ad661b297a5ba4a241548aa47cd9641

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 0a671c90703b0797459a29faaaf76a79eb6d2d2cd5d31fcc053f19db99905b20
MD5 7fc91494e5ea05e26d2afe7478a9eff7
BLAKE2b-256 6ddc40173a9313525c7edb5fb186d76a4ced4617db601b1967272fac3eb9ee9d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a8ead227e291dcfbf7e1f7e6e3f048ad1e862f2e205b07e2a515d9941ee48eeb
MD5 c638c4f15cce5ac945e2371883a642a5
BLAKE2b-256 1bca9237b48a4c41ed00147d78b899e7da9d13ed7bc748865de800ec0831eb0e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23990d9b5a816d7321e545b87f21e31d463cff8db052741cf053daa1159049f9
MD5 194f8b6badba940612847890f01641e2
BLAKE2b-256 f34900522db2e5d9382353230d854146d055391d12006abdffb88786f18012fe

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 21acfd9ef1ef7ae43ea50c9fc687a2bf3be8f601124bc8541a01488791e8e3b0
MD5 6eb3afe5585c833bb1cbae21de8d9c32
BLAKE2b-256 ca4685ab88f61ce66360d1073a97016ff61ab5b77d8470601de5a7a74dc372ad

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a3089ce42c7234b435df913559d282fd256ab5051d0c308a2612c26550801f0b
MD5 31b43968a51004b8274f01cba2a57094
BLAKE2b-256 bf2fd60942b16c4cfd9653200c01352b3d2d9e2d3a5c38db3fbd9153f26cf65d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c11d0ae4d31d4af6bb975f02541af8dd632359469b2cc4d3f710897f9745e86f
MD5 af68651574ac6606db38b22c62db56de
BLAKE2b-256 82e96da6ad18b3e6dc6237d9c4f2166827bda6273be0cbc3542e56a058c6f237

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cceb634226679058096fbee7a9c1e3d0a6cec6b954141f8dbec9ffc789e37e3c
MD5 18969f8d4cbce4f6ccc35fceb1c7e17c
BLAKE2b-256 246c0184a68ec9eb4735a12c1622baf384c6af8edb451c27011415a0f43941fd

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 af95cc40fb7f6ce8d6d49971ad1d52a46e6872c65e3cad92047e7f786b5ea338
MD5 1004d14c8acb8563a0428af2978481b0
BLAKE2b-256 46b60b8aade45878a5ec2746c772ba76aa9812f9b738de875de5b860752a75c5

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 da7c7d7a504d9fae58cae1259170201e6c4f10833824f45ea309b218d7fe1384
MD5 8baab0d569d5f6f2f4f92f0585d5f574
BLAKE2b-256 e88578b43c15d2d13a7ab7c5fcffeb3acd0ecce459412435ee2064cf09189ff0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8049cf4cfd12318b9cf5c68c739e86e02357e36d2aed46deb7e776027d46f66
MD5 cce233eee7425fd9d09c3947f9e74740
BLAKE2b-256 414a25e251f02023c62b3c7e0be73a4f084053281d3f76a2d1524f66fe320cd2

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57a834759b3baa79f45b6f3f9eae3007d2fcae90996c26bab38364b25d18560c
MD5 e50419e89daa3e5d33392be00014085c
BLAKE2b-256 df829ae549c6f47e8e920da2ee38815579cfeb60f18778398030af7c7ddd540f

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ca4f2f3f1113b321a5c509119bc18c5096a5c0ad741a90cd9ba7f9f240b61b5e
MD5 c7df2e330308bede5a27b702f9d22b53
BLAKE2b-256 26c5baf68d1249121815956c99f7d50df6235e54e455b379523ed6ffd8b23dc0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f7e4d37f2b77d31e7b672691003a986a75de63c9a24968b8ecb7f66515c5792b
MD5 7a81d12a95e9f7734f2ab5c650b95ae1
BLAKE2b-256 763c20dc8a9c65fcf1097866cd88f2042dd5a5f9661fa2956a6d6433c3e6334e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 3226e97e158e2344990f437f791be9bc7d25c0e5bd8ae7dd56157bb940398131
MD5 97c1d68b30711710afd1f5f401ffbc11
BLAKE2b-256 dcbd9657e6b28743a25b2d41bb72b37b9b5b4fe6b7feed850551649c5602781b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b86ab7033ee12d38cf84306c5674c92c9278243d7239ec7d456b77004333d12c
MD5 bba6036f4b24f00e8cc6801183aea1cb
BLAKE2b-256 0caf5a58b24a302b25282446af46518b1d563458fb3ed200bea6a068e45f68bd

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 885a86f311155041d40032365cf0624d992245cf9deeb8e30e2e3dc749410d0f
MD5 465dcf872838d59eba00e080eea1f6b8
BLAKE2b-256 608e049a9733976a9b923cc8c1df75ad1bbaa8b1c5ab2a85244bfbd924f96e4f

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 153959e82db49f05e83f4f0fa9019aeac17fdf8c49ec814c5cf259e9c5f42388
MD5 8942c7c8c4c94572893027d22314aba6
BLAKE2b-256 3ce101b1e4fe7220bfcde4c36f3e4cb855e6b438873bc782480d796707bbc10d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b18b9d87d9268d0c1ce7ad08175951908661c6171119a7fb607072b71c77a48a
MD5 8ba4968e100ee29a51e9719e5ab45db7
BLAKE2b-256 482a0b8692ff3f6810d08183afb2f66a81d87ecf4330c793bf2d6ed02f049cc8

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f5899bdb4fb190ccc1b6e8c2367f4e76951b39777d568df1736d1b1230c89c33
MD5 c8ee343482936769479bfd2edb2b215e
BLAKE2b-256 f2bc30d7407a0c56178356a599704ecbf887293de8efd62a2ebf3fa15ffe743b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 3115e9b4d89aa2983f7e67cd2f84a4f1776e7ac249e2434431f22851b754e440
MD5 44293c5a0607b65962f44942055fadfc
BLAKE2b-256 c9b90c358b2e5c509941c03b2fe1ebe40c3383d20c39577f99ae323f77381969

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6d69c433949b2fe1cab8c64b313c56197e95f718232f3e866f4df4b8897b430e
MD5 df23a66f7830a075a53aa1d232df0237
BLAKE2b-256 9c3b888ede580da20e972fbaa4867dfd188bdec5876d4d3e4e6fedfd3e43dd3c

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fa412942192f7cad3046a1ebb14af57e4d3a0930d8e0a640683cc39c14437b9
MD5 abdd5821ec08f8f2338c716e160c831f
BLAKE2b-256 a0249b31fdadb9b9d618853d24c231ff15d67dff998bc66ba9c3c8924f4e4845

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 50350e75b65eafe95221b2fb559d3ab1fbfc59df4aeab6aff68e88be2ad7461f
MD5 3c59c09ce3d60e781ac9da3e8a426b6c
BLAKE2b-256 0648208c290964fa142f24a2455bc7a2ffe3bc32368e9626fd11fd0ca61688a6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 931f11e9d6b5c9745ed50fe58856225456069763aa028311b7261df5da84d6c6
MD5 1b8cac1c7afc1bd04d5c9b7d17ed6abe
BLAKE2b-256 bfcb42e394e7bea7b569db6520c75eda8520f7221d5e07a0245be83ce00a0d62

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 461f7d75ec0dc4eea89e85780441e77d8e8572953cf7785c513a741b0c5ad79d
MD5 cc79f29e1ca2de7d726f3935c563c378
BLAKE2b-256 dab96a02cc855b03bd47a8ec5148cc320707d651bee88291db1cf88aa6de0454

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 a73f59b21184202aadeb0a064a470277f327ec3e811bf4f4f2bc203aa5085d6e
MD5 9c0f3e6bfa0a0da22cdccb7faa67d4b8
BLAKE2b-256 4309e6d1c701e6b0e3373b9159360c425fb397d241d9b226ac24bae3835cd905

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9b9454ec590df2b6db83f82a262fe82c477598f89a83a42ee32de3433e040547
MD5 25cfe2b42817a1017f40661cbaeb1581
BLAKE2b-256 dcbd1684a3e1a209d21613ffb240b9e3aa6be308ae0ffdfbaccc734d9d6e5901

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06ffc1a0231450770f232e355b95f0e7dbd130bf8fd709ff762001491f8c0b5b
MD5 1fb9dd93b9aed78831c96a0e7f56c5c1
BLAKE2b-256 48d2a33c90c8f9635d5e8d1f12c4bf8a41bd432d6e3f605303bfa4dea922021e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c6a0d40a6c5e9f0f39445e26a202b1eb5966c450d777a2724030419725bc00c
MD5 b8b62d64355eb94383caa3e1c0153bb7
BLAKE2b-256 142748a4984cbb1cb71580574414a1cd7d073a1f1d3c4f8a4e7a896fcc61670c

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5bdcae8458cb4e4f4aa8265443fb9e42f76e2104137d9891427974b3f913e382
MD5 07ef7fc2d5ca4f6caee0959a515b5830
BLAKE2b-256 41cf57be874b78d98e6d8ada62bebabce5d19240dced9fe8fb369cc2206ae2c1

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 868867f91b59b05132c421ed05b0c237c9c789b0ab656738dd23a77b3cbebe18
MD5 b7ef84e43af7fbfcb815ee3c026104f3
BLAKE2b-256 eac23fb07c9df7b4956d9eb387e5098c70ecbf42b75b8de3f1a6267ccf463a75

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 12b85e0542f2f1924bd5c7f81bb98b9d84e171e2ad0f96d85adedcbf1848102c
MD5 fc226b21fc30b7611621854c3677f82c
BLAKE2b-256 b09f4d50679be68266fe1567a27c1f98ef0b11b235a9ceb32fbce304ed139539

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4b5aa9ec249678cce1b9f8565a081004f4cf07a037e424a95f078d28d231f257
MD5 ca832e822bcdb16fb9a4c214da45a560
BLAKE2b-256 c8248caedc0b120490dd44c01a77a1a0320dc77a6cc0a7eb2953bc9b620f2cb2

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd80393dcf6f51b1bdb0ee12663f8491fe01cb553a6f9fbb95338f4172275959
MD5 937a88bd607f94dd5d95c80f3c889cbf
BLAKE2b-256 ce8d519c98985fa7958ea8b251d0535005f81be14c33d92997450e3cc22df5d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b764dc7d6555d093bd3ce1df444aafd343400af077e11983589d39619c1b8848
MD5 ee826fffc869d97a854b7449f23dd09f
BLAKE2b-256 529df8c7be03dc6e8384284d48087c1812608de6689faff5d0f4097eaf6b0bb0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 958c6fc679605c478225a819b153a371f1b5221b79a37527a2e629fdadd892d1
MD5 aa317edf8bc2c45180bcf040937a9b38
BLAKE2b-256 6822ed42a3f46425f35bda6c7f5d34d5bf2c260847826086c922cbf5f00ea8b6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5522846cfbf0c0fa60e4b7cddd5129cf1d29cb6772081a7c4290af0c7e503f05
MD5 1dda6ed456c52174ce87c7dd659b9e93
BLAKE2b-256 310be318165a2e23086bf4fbafda794c1ba9c095abd16866d9c71d027da8c313

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f9fdc43720770c191c34460146fb6a25ba3414d3ada36c05b47c78563ca70666
MD5 368250b8075a72f0255e91bc1b0576a7
BLAKE2b-256 70b03ddddb7f9d0e2a62d31ddac289ad019e4952397a36da7c649b03ccf1177a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 690def7c468895c0cac6fac4469e8f42c80c7a969f90c1c6944e2e38db4e7dcd
MD5 ca7d035ab18fb51d2d9510d2bb76d31b
BLAKE2b-256 b191217263691733d6598945eae6df7bc60ca649f4b01b80549c53a021c15af8

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.2-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.2-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 542c8d73f8671ba8c6624bd4a858dd4d86b6e2b3fbee7c0118fa655a2cc5ba42
MD5 56ad5ca389a70bb7077e34cd6a1d5cca
BLAKE2b-256 b9c4b337c0f4ab11650c38ee29060f6a30e85bb4be768c666f609830bf36a96b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page