Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Read in a whole audio file:
with AudioFile('some-file.wav') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate

# Make a Pedalboard object, containing multiple plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.6.4-pp39-pypy39_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.4-pp38-pypy38_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.4-pp37-pypy37_pp73-win_amd64.whl (2.9 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.6.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.6.4-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-cp311-cp311-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.6.4-cp311-cp311-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.6.4-cp311-cp311-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.4-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-cp310-cp310-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.6.4-cp310-cp310-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.6.4-cp310-cp310-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.4-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-cp39-cp39-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.6.4-cp39-cp39-macosx_10_13_x86_64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.6.4-cp39-cp39-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.4-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-cp38-cp38-macosx_11_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.6.4-cp38-cp38-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.6.4-cp38-cp38-macosx_10_13_universal2.whl (4.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.6.4-cp37-cp37m-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-cp37-cp37m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.6.4-cp36-cp36m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.6.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.6.4-cp36-cp36m-macosx_10_13_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.6.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1270185767baad700cc1081abe89ee133cf587b01a301eefa4a69a60e22af80f
MD5 83fc60e96a700192cafd2bd52b9be672
BLAKE2b-256 2bbbaaba9cc7d3ea8943423b4a63fd0ee2dfd1ac8763bdf9fd207e04f2819d8e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba810db3459bd835f235dc384f2e37a31b88918c7470d43ce7bc12bd73dbc58d
MD5 05f5b86e036ca1d0c021f6c71d00358a
BLAKE2b-256 44f0a3b1eef93a3be85aadbac60d3e2c89541b931e0a9887e20f430dcaf60796

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3cced85c3b850090948ef80f28b581bf4c6ccc93fef5f774dd0d8e306aeaa92a
MD5 e19bfbe10bd4c64b3f2b6615d5b53e34
BLAKE2b-256 6787cb3e39599dd5245d76f37e4043b9571978783ffb447b0189c716d1b1dd0c

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 551c8fabb9a45bd4562f0a7b67c7b912268305a028ace679a21e0fa0160d0abc
MD5 9c78a5417feaff7b9c90bb77d2af38c5
BLAKE2b-256 76dd00df64647e3a1ec919a7fd85ea2044f7737a9aa6c601eba8eb312fed828c

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 69f2903e43c9fd19db59efb28fef1644142125eac1b09993b53f4400252843c5
MD5 5425bdd394966268920b5200084f32fe
BLAKE2b-256 705bf9daaf09ddef2206438fff7bf775d53a78253579118eb457ae44dde5fa75

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72be098605d6cf7515517e2ea57e5189d880fb9cdcae19d7d6fbc4bbad6ec6d2
MD5 1039026ec6c39ef3459feefc4e806975
BLAKE2b-256 2562724e61c47dcdea1c8d009ac764b7218e570303773ce33e6459da3151a254

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 438686eecdba25547836737baf3eb4bc2c24f92800c823b2bf478ebea7e1d496
MD5 e157c40f54c5e25cff7775aadf74b44f
BLAKE2b-256 13d68782cb8bb982e290b03bf1fb4273949e13ca2ed3c00572dc20474ae2fef4

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5f624085ef089b4b07572149126c1243672d92fed91e97bfb5c5e8d9da976057
MD5 e685cda5bfa4d42378ec2e89163570cd
BLAKE2b-256 08f668eac2bb55d46b3aa1bd2f2ba50136100891e0f265066481ea7a639b68dc

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6e6fbf16fcd3dba99c07f2a973e85ccbeb130cec1c635e668f6ec0eecc2de529
MD5 500580afa0815446e776abea0231c12c
BLAKE2b-256 63c8a9086d3dacb75ea1812bf73771cdbe8b259c7f9cd5e3ef731a6c3a550c46

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f5d2f6f32d815180578f8ca8dee63502b98f1cc88a4a5b88d9cafb316e2daf0
MD5 ef98e782d8c6ecada493df9f423f3204
BLAKE2b-256 6a28220e1dcdab6c19e598a5c0d66deec6981592eae7a5a4598df20f0edf28b3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff8cbc4b6f2a89e0db8bd054aefd0e98e499f03f7f4f4df2fb1804e6dfb7251f
MD5 cd165624f234ec5c53bdcd36afcfa5b9
BLAKE2b-256 7481425212923a11f7e37ecf1a0ded923c947c00d8adb0bf80f9ca20325c2e21

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fd1be24a6c3fadea80a69dab081dcd77783d1015f96429c3d660e03f5dca2397
MD5 28f545b3e861abf64072a9976b84dcfa
BLAKE2b-256 40344ffbb4f253e2eee70039a66a19c2dab034931ceb48dd5feb52554ef7cb8a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 dc898bf1956e57165b050258f3cd1069e8108c6c2ffcd91113914a1cd23c32a9
MD5 cdaf859af1028a19c27582159eb2e50e
BLAKE2b-256 63a4a0af96ccee66436845a8006f9df879f373419cfe3735f169f9192fe81e26

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8db215f2f77663673e290eb34539d7f6aa2fd8544c13840ee2d7c46b2217a106
MD5 481e5db7925359bcac9abd57b9af2430
BLAKE2b-256 15eeb074cde153dc7eb68600a9e2288aae93bb2bf11ccc89aba5a08e8ade45b0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e9ad52c70791e83ab2faef793958d062a9373ab3e92304841ec1cda40cdbf13
MD5 c9a26005490087964620809528078164
BLAKE2b-256 7856a0a5d4e11d7141646a6e6b825d7a574dbc139bcdc90a798e6aa534a9f85b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 514f667ebc09b0700d25bacbc802e48ec724882c5de8c224c643672c93e01d06
MD5 6274e269822bc1482f3d67925f866d74
BLAKE2b-256 6a54ba3e77e74ae748113dcf1b6434a40e55e59495e3cc2b26c47c8acdfbecc3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e07fde9a4079c01dbd2d5f1e1e8d7f9f9f1692d258d61c34c7215c9504bebfdd
MD5 4fce9161320f341ea9c96e52b1e0ae42
BLAKE2b-256 f675118a5090a0c36f66684eb5f2ab51cc739811b84a0a063847a3f0dcb609e2

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 8896166cd78a67c5b37269d6a526590fa127e730017b12a05f2e60015a572cd9
MD5 12d5956da45527690a31db438bafa9dd
BLAKE2b-256 74fd578956223906b7c1a0c5b9bafb0b2b0978c9d0d942afa07e7563c7e90ad0

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 570e696a39286e1eb672e6f4711721efe2940c8e0598ea9340b0c642779d3737
MD5 b59805cf5be7654c6bd01f0f59b0792a
BLAKE2b-256 8dc3627ebc94a524143ec7bd1342f1cc88d69301deef522cf5b14394aa981e0c

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 466d89f3634b324ef69770fb25914dafb1836d9c7dfead569d95aa9ea0cff58c
MD5 a6156fa1400343f3e23a220b561fb4e5
BLAKE2b-256 d262802fa08e24a38c487cda4b6c52b6c2d819894537286e30c97bd9828c3f56

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7f4890b02f191a2efe728c2ff6004a82102b36efabc0faae6417d8d8012cfb5
MD5 048948cd50fe5c72132a96bb52a45bbc
BLAKE2b-256 d6ce3a58e75ea8c70dd4df7e6a1fd8a9840c39b61576bb84f6fdc5213e05dd76

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1468b73ba6edbd4adc7bfa49273a31d5455bd8e3d7c4dfe61bfb73259aa2a4ed
MD5 26d8d232dc26fcb3ed38ce7786d9f5d3
BLAKE2b-256 8799f13820dc0893a59fb85ee75894e79c8b3e6378bf99f6dfd7ab106d319ecc

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a62dc9c27030c5e673f66818a16834f688d133027f283c2677b139c4049ea93f
MD5 16c2eb3c737cc24fa2958d75a7d93e6f
BLAKE2b-256 351b416c9f000c5ec99deeb4c47c47a503cd792ef4f5c0a4015b6ded1d55cf8f

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e90c587621083f742f1e5cfdb2ba1e19a7cd4582c57a2bbfe548ca23558fdab0
MD5 bbc8c196771906396069951bc95156dc
BLAKE2b-256 b7a844a6896aab6a2810db314fba6c4660d140a365a6bbf3d5f6cae5f97a2c80

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 539278edc20ac93b85c88cf4f87cab6dfbfcb44553034f1d9bfbd437d3279eae
MD5 f5a3c95d806726b2e13755e532cc4adf
BLAKE2b-256 d3386db2bf880fc6d7e5ecbe86b4c4523afe194c262049ac0fc8b75478c14139

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84354bb2a5314130b40a702cd3dd899efb7141047f40665730a5897e3e19bf45
MD5 2581a1ecc114f5ae32340c030ffe932d
BLAKE2b-256 acd6f35e81f56767b25bb3a1f96c0adc69ecaad45a4bc9f8f5c6685ba970dbd6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5a00ef0103ebfcf185d01518eb7107e71280e423febf3233bc4648386418c015
MD5 ee7284d42ffc09b83357ecb6b006a711
BLAKE2b-256 ec49f4298398ac6fdbf5cd94f66cd01dc65e7d7281abe8878c7c68caa0f94384

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 10a6138055c39bf5789524dd7602348a3379886dec3538d9b9e5700eeaad674c
MD5 2a67ae255c5c74139cc2b42ff7c06f7e
BLAKE2b-256 93dd57f5c70773c542db745272c4b622faa87a78ff70f5f39ec3d3f564afbfae

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d90ef573b5f02cfebe9f33adb602114181cfdfbd027e5175e77401fae8d41f39
MD5 fbf77a5e6418de76e3fa71c02b736819
BLAKE2b-256 9d2a9bfa3d434572f51414f9603ff6888e081a7b0d8d81723b2b46756900d6b7

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 78917a55e0ca42a24d2e29222f32bea060f1fdbbc7fcaa8be5584e1a75c2fef7
MD5 308b61ca8a79e6207280aa576c434a09
BLAKE2b-256 d4466e49ffeb88d9817897f37de3213f286e410e3f5e13281de3edf8bc7d7970

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9cf3649c9ecffc566611790bf0b6046e9f8c8ef7d16fb4630306e6d7be14302d
MD5 ab5a7fb9b1245e71879b7dad46a3a1ed
BLAKE2b-256 46a75800c74bfb2db9b97c237c6b5147f50ca447e3289e59226005f8623c4338

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94e3911b704a92bfe159dedfdf8c021e3c94d9b830333e4ec862a3fd462b72bb
MD5 49ff9f7f98a7495b152a5ef10a2f6412
BLAKE2b-256 cbe0b617e44d828af2bc4ef310cc422df753c96e308d35d9fba5c03b8e7beb13

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1b682a0bba79aaf31905a77615009c4d679a83469aef23185247656462697d5
MD5 5f54f6bce408962f3aa1176ba77afb1a
BLAKE2b-256 e249e0f0e6f29bf57d3b049deeaf850dcaceed955147492b3f2cdecf695e2743

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 670b96a5575d535b7bd864df414341a9b7dbe73ac54503a97e4eeb373cb706f2
MD5 9cd4b928834e3e762dab4a843387f2ee
BLAKE2b-256 95ef2f630f99b403748a627cc31b05e1c5975139919bb4d69b0c6ec28de0991d

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 28635b53d7c3a9ffb1676ee4f3541eb930cd9dfe9b0a1c773df13f2eb69281ca
MD5 72af4e1de469425bc209451ee73a40b1
BLAKE2b-256 7e2936fec4a2d4db6655315fea25f24332afd3209e594ee27e6fc357ba4c0004

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 bf11a2a2311d3a38c0e3619047e65a85837660ada669f97d6415a534741eb5b3
MD5 442bb9881dfbced6020762b9a3913bf7
BLAKE2b-256 c721e0d221dbcb6a5e42f0e05809074e7cf4c62c541f4633e16a8422012908e6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 07db17e0102aab8822242549c0da081c60469ae85ecda33d70eb02a734e31ac4
MD5 d7975bb05ca14d784c901aa1c1eed0f0
BLAKE2b-256 f70b52cf5ee0a1de85b4c2842a69877a951ace21ff711bc35ecc2d6ac497b1c6

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4c2fefe66d1e36a105d74dd8b8d1b51c379179a4a282f032e1eec6fc17f4ce5
MD5 23b713ea603aa05d31774d95ac60de8c
BLAKE2b-256 812583cc92625bca2ecd6170420fa09570a89bd5dd04d1b675b29c965bf4cb5a

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d2c46209d6144f8050f8bb91ef9a3e61a527437e5053ffe59e75d5c9116fae60
MD5 373d9dd6ebb87346cb49e8d387f04cb5
BLAKE2b-256 ff62cb2a5641761c7503eb5e188b322fcdb9b4d18450722801fa31bb5984cdba

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 406c2e68a895b186f4456d7a3ce7ac408387df3fa450ca27ab0d1c9093573c54
MD5 2fba56122c65006ae2df6c5441cab41f
BLAKE2b-256 dc9ead72b286319db2778e0f397fd6fe677c6c6fbe888a844ddda07510c9867e

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 f3286618656c215598a27fb11e44a15db29b3101305b6753ec13f8afeb0ea7e4
MD5 06ac61ea250b0f33d066d7389a9fece5
BLAKE2b-256 f4255404bc6d86143c139c8779a86a92eb459f4fe4f7e543c4c0a34b0e0fea0b

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91ec788caddde8ec174030d0eeeef5a90b7aa75ebab3365adbcf57285b1c0b3c
MD5 fddef5008b72e51fdf725345fea195af
BLAKE2b-256 387ea5181ae6818f6a6df15118f4aa4407b1c4254763ba48080b011e3e3185d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2af6ecef1f8de0544480022b3b3f11d452b98b9e1a4cb0687e3560b7a8084e98
MD5 69d0e4ede4820d10c9d799231c12a9d0
BLAKE2b-256 a71e719e2742c2824da5c75d68eff950d9508880912d30d662fe42f726dc4738

See more details on using hashes here.

File details

Details for the file pedalboard-0.6.4-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.6.4-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 66fcd6208fa2565edf97e3f51bcf9d7039ae8ea38f198935913e4ed41b1cec36
MD5 67a33e8bd95fe4d0b3985200f9446f81
BLAKE2b-256 f8abe34d3746c020be2d240ff888fd526f541ec7c05c3702f1276411b24bee9a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page