Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(int(f.samplerate))
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.7.1-pp39-pypy39_pp73-win_amd64.whl (3.0 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.7.1-pp38-pypy38_pp73-win_amd64.whl (3.0 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.7.1-pp37-pypy37_pp73-win_amd64.whl (3.0 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.7.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.7.1-cp311-cp311-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.7.1-cp311-cp311-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.7.1-cp311-cp311-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.1-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.7.1-cp310-cp310-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.7.1-cp310-cp310-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.1-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.7.1-cp39-cp39-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.7.1-cp39-cp39-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.1-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.7.1-cp38-cp38-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.7.1-cp38-cp38-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.1-cp37-cp37m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-cp37-cp37m-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.7.1-cp36-cp36m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.7.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.7.1-cp36-cp36m-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.7.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3bd813957680dd604e60aa4b3def70bcf0f66f6ff6ec59d7dcd8fc62323cc8c2
MD5 aa77bf027eff4ad26d8d2370dec8b229
BLAKE2b-256 2fcce0509eba111c931d90fdd3acc8ca9b19db88f0c9663e5ff54459226c3754

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2736a1defd181a0c0b9a33e804608716d150f8f82fcceff3130b4b318ab149ab
MD5 abc401e2dfbe6f4a117dc613c0878d4d
BLAKE2b-256 d32bbaa6bbe69a1bb0d25c19d48323b68c38bb2733cb5004408f6ba5ba813ec9

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5f8cd7fed37bde0ddf5485878f4f65bbb713bfe73049b261d26f7f2de376a013
MD5 b60052236b168e45aeebe43c2ce45e1e
BLAKE2b-256 768d16a58a399f98ff997e0c659a6bfc16e831f1818a1fc3b4b3a9e7072f06dd

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 2bfb67ef00c4554122d28357b33c9c92a435fd54d56b96ac06ea492a6707285a
MD5 9cdf0cc86099d30942c78d2b00c9e0d5
BLAKE2b-256 acd7b35588d17918d725be5651d9087a68447c1f4ed06808c56db901afc16a44

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 f518e814dea406ea79e0b23390a42d9684fd6790f2d5c46a204e9568289e2e90
MD5 8b2af2b626bf470ebd06e8228f683a7f
BLAKE2b-256 e6d9e21ef0561efbab7e40482b9518f5a61286264206f9cf14f19d3d333ffa9c

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85af66ba52bb732163e4f9d769414f86e664bc46ecaa180d065d65df20b135e0
MD5 1195f0cdca5c93cc753e3b3912930abb
BLAKE2b-256 74b3abc22bfddc84bec33124473dfde958ec14bec127f4126ccbf351c45607e6

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 865066c1ce96e3ccb7495ee23c58bbc5f1996265f53e5037a7b5ff46fa2d8bfe
MD5 07c97b55295e73df05cb0ebdd3a7daa1
BLAKE2b-256 afbb55cfb199d19738c98c9998bb1a565461234f9685340cab550ec3853c35db

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 66dd6958f5642d47b6a038e1018200b7135aec54071dc390fc18317c65f189df
MD5 a66907ff779fed785828895aa0139992
BLAKE2b-256 17d757aabcd684965250abb0dcc88b3f1b36f1d0e01a31e81ba034d37b9bc822

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 75e5183ffe6dcda7ecb4194ab402b1f8216d644cca7e630453ff8533e4807027
MD5 a37f923a677e12e669f589aaecf133fa
BLAKE2b-256 cb203ec5ad9c3a2f3ebe3eccc4020c4a517c3ec6748d303ef9b99fe288dfd86f

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4a39a6c6dd66bcb14b4eb2862dfa866c54b26eb1feb04b622212911258920dd
MD5 b37343ad5f31ea0784c128db6a70c270
BLAKE2b-256 e8846a63cf4def20d61e137f40fcd0a462d1f862898156ab87f4c6a41428b715

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 79b58d49fe766a18f3b6567f0b55d1af5c5413f9498f04bb6e1c7072835ee982
MD5 22dd3455fb5f4e1603022900646a2079
BLAKE2b-256 f1e3cedcd3bec9d282a798030429bb3b88042eedee77eba051fa03986b85320a

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f978741519a7805a900346b4b001e904d0b194768d4ae8253357d0e9b1e957ef
MD5 49edacd413ebb87784ca13c9466f25a3
BLAKE2b-256 639728164642122dacfc93c17b9bc64889fd4f3152e33a514862b44a8daf363d

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 319b758db57516bd1d65fd004c062f369c47539bbce2939ca24468ddecde09dd
MD5 0ad29b7ee0942c9496562fde3c0504f0
BLAKE2b-256 192448d4ea550d3c35471dbed582f181d0c73cee975175434e16db1c076e18aa

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5a451267da4d61da4129a55e938c130a5752aebcca60b7fa8404cef00515c77
MD5 a1ebb43a289ffee6476f315e817de7f4
BLAKE2b-256 facb6a1eb244b4f1894f36ccc898f0fff87c3900be8d55f2fcf0dbd29649a434

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0c3c31b3a2a6b19bd5e38016265484e70a769f540d84e37b918ffdec388f2396
MD5 60cb989a0c04fbfe46c9a8d05c6645a5
BLAKE2b-256 f6f9d968cb409356bb88214c1ba20890cc2a61914dbec61a9e2a43016269033b

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1884b83f2c49c1cffa7d6000eb69053797c4c9c2afb29d33067c06fbf285b18
MD5 79225415c3e5895cbd57f77b588562e8
BLAKE2b-256 63aaaebf97d2610e65b1f3e7982022ac9a5f7d8cea9aba32e030b3c0a99fe3d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6304c20c37a1c96f3882efaafadb853666b003e0be8a19ba7db0fa7b3b7e4362
MD5 5d317acc269d36b8c5e1430e5ac5788d
BLAKE2b-256 2a0733288830724aaa1d9248c11b7bd150ac4f735973d8e1d20c175eb739b2a8

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 cfc5d061f8b3e0235aa0e9c51f591ec9c1166041f73696917c9306ad2c986f69
MD5 2074c9e8b45bc483c546aa1640105fae
BLAKE2b-256 c8f3a7eb38054b2f5b69a18d51b31e506695bcd5537af403cc665dd52c51965c

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c737991f88db4cafe4e2e5e36e54971ad41a58ebe5f2e6e927148a8df9123e07
MD5 7ad28f4c45b63f0787705076779ab478
BLAKE2b-256 9371e7fbe93f7c2d23d56334a4e80c8072b10348a8e21ca0d775ec2cd0c23a59

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22c3a7a0b8b43e311c32fbf35d9a372adc21950c7f2bcc4dbc7adb8c5f172e88
MD5 39e0ae07c5716e1ad08ed075c642403e
BLAKE2b-256 edfcbeadae086743d9d48e7f8bb5bc0e230a42faa7442b075becda4a97e26577

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cd44f8faa545500ed43500c8bab6d726f7f1ae4b600915d4cb8331be9fcf24a3
MD5 c467c3c64bf19d9aafd7fc1882fcdb68
BLAKE2b-256 6880a26583945a5d727fa404542824a43cb39163da033bd7ca8e220951beea96

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7bf1182919d6d6b9e117cbc874c1cdc4041cd67db05f2bd7c5dd8269000f0521
MD5 5f15c1a9dbb39900e3ce4ac2177921e8
BLAKE2b-256 92664b48e68a71461a9caf14e54bf273268a80d3a19a912ea7e5a2fbd413fc69

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9e8da0193f368b26f774001915a50153dfb30e8489849db25d2831f1838f7168
MD5 37535f566fed0cf7d35c41b54d2fee3b
BLAKE2b-256 c9bad2f42042731d67ea66ec5744e72c0730de8bf368b0fc2b922b8038ec60ca

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 0fa69ad747b3ed81c4b6c382a52eb3d3792a923a59e8277d0b13aa0c8d31e18e
MD5 92ad13bbee5a0e995030d9e0323376db
BLAKE2b-256 7c75ac45f45776ea2dba33fe89ed19bf621e41d059298542d8b8a3cbd05ead80

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8986f97502db7eef70cf7840ef1cdb9ba42eea639a6f1e49d45606e46c4f3715
MD5 a7cb2ade50e1d1df7a9692d0f1882955
BLAKE2b-256 ce4bede7c6606c0ca1c7ffe3ea1ec73551600b9dccbebf65247340fd13f8cb1e

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ad95fb6154d1e6bf6d9a0577f7cc962f84ae670016d22a07e95990469a00781
MD5 caccb21ea6175ec3854d32bf844c3ead
BLAKE2b-256 1398eb2a9d3b0c8d205590b2736a1dda361ad0b87808d2879f0c5880bdf7238a

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed6771797d09a83a0d366f12b0433d7b367658430edd5f805290ff1eac8fd5fa
MD5 b3374e602bbbfce012cedeca1617e3c4
BLAKE2b-256 a213f3c8839994893f5a22116c8233dbe4e980c83bb72970de47dbea1a80bb77

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cdc33e0b5d3994b6011c4c6b68a5af059bc078b72642bec7d47d8a185ca6d7b6
MD5 f538d28c8e1ae3b1f6bfb23e552ecd39
BLAKE2b-256 030ed525cdc482a3597a7973ac9ee15cf26774ca42a3092c0d32392e3f2090f7

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3e10b57e0d151b3e977626625505a996e4f01827e39d5c5eebc104d3c4ba1c86
MD5 53a50725c674cb46ae94b054ae5b54f4
BLAKE2b-256 2610323b2664566b31ecf1c70d065184312f99cfa97c6c5766c0143f8a2c1e6c

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 6866ee1a659c447d11bf9e204af61a5ae75134d2a95308f4b7691f3b11f515f0
MD5 092c2c3e94796b380be48c070fc63105
BLAKE2b-256 6da54be4a1b86d7b3714edd95f8d351a48d78ee63708e6f136b2327d99891344

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 51fff45931a485588e3f8cd1f955a7cac04c4de78f5694cd1a7213731076b4f6
MD5 88b02e20ae601dd99003e3a0c5dfc5c8
BLAKE2b-256 f1ad841948c4e99797a5c2aba1a773927bc1ad97f3d4fe168b01196d7b69a9e6

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40edde4234fe14ce92a96d87fccca87995141cd85ac14f234858698637ccfbe7
MD5 173b77bf8482efbc59175b4974f7d16b
BLAKE2b-256 e7602304e557fd85de86a4072a0e6641cc17407a106a925a172b4654bfa41bb2

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f70a961306dc84759b48f003150fa27555a0d4961a7173c5ec0c5bfd33342612
MD5 7ab16abe3b8d429d6e521e860d60c2a8
BLAKE2b-256 b8b2316798a96e2b081a9a634adb83b8a333041f65458a31c8978c26e39e03a3

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 927ddad157771ae725cb3c428b783e2791f83852f099d462ca582e6a0518158b
MD5 6b8437eecc40ff269f2b12c8e1b60406
BLAKE2b-256 fb5f7290bebae978fd083e29c403c1ad95e99941dee15ddfd570f1a7e875dfbd

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3980da54f169d041e247fff8dfb1e1abcb8ef499f1eab3d5cdcec249f6dbc9da
MD5 37dc42907ee20e4e49eba5a8bdd9091c
BLAKE2b-256 3bd690dcfcbd394e2c34c8e5cbe43f60e9c6000793eb0f22dbb7cffedc7126fe

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 7aa5c900f949af72c29cc9407669259ff429786f5d20ad8ef1cfc367f940330b
MD5 77e4916572df6cec172bda4a490c878b
BLAKE2b-256 ff6df28f0c15d74cfa627fd71fc464c3efa0700d9ff293cab36880046f83388a

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d09aab1faa91a148c4dad56ea14336d45221f122175b5ca465ba051a1cbdb11b
MD5 66492962f6071c69fec3ec5d36e1dd48
BLAKE2b-256 26be533621d996e4272253f18b7f8d09eff1080bb5e810b214712166bfa6d03a

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 226d307f16b13da20c7fda6e55da55b3ab005f15e0e3169bac0df77481058b8f
MD5 5c347a18f9edba8d33a3128e5140929c
BLAKE2b-256 a7222fd806e679079c5ef40be40858ad8925910723adf0c6031de839555a7878

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 adb19be8716fc64c0e083500aff53dd8e8e0c91e184e76540a465067670dedb2
MD5 17d323a76db5d527aea8ec24c55a8ed6
BLAKE2b-256 6fd81e354be6fccfb76b199ba24f8b503ff59004e90b47b29b2d57f0e65dd5a8

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 24879e896f1b0f1d4a91c98c7fdc776693170fc8c582abf50a25352ec60abeae
MD5 3999142fb270ef5f0b9785cc63ada296
BLAKE2b-256 f04ca090a46b88f3d12ed4931896aa23ace7a164e8eb6fcdd15bc994ab4698f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dbdbceed1681df5f81db34684327735008985578fb46d803f1d7c32b8f2f6400
MD5 abf362c9f9d49073607d271e74f9d2f2
BLAKE2b-256 68096020f492806615cc8fe329774b095a5bc1f2b0b32dff722a4016331a38f5

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4a3092b0bfd15f6f48b91088dc16bac9166e3eae20624799cc6eee1c4caf423
MD5 a3f4119247d329fc5d341a1a8f27eb71
BLAKE2b-256 f2e8fc19430eb906f71ad732a2b4b9ca6978428f32d491c1ed1aac75486ce7ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e1be59d5f3acc3aa041622c2b03cf9bb11f798120a36e8309617eac88b96c915
MD5 e40c4b4862c9cc34d93e8da5b2b173e2
BLAKE2b-256 74f624ffabaef819cd6f1c64ecd077897d2d80e8ea9e5055253e96c64b952556

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.1-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.1-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e69d2253e13c6b5bfeb41b210faf53ffd12b35361738bf9c7e658da6f9a071b7
MD5 f9df3d23212f95146597c7705a1cd2d3
BLAKE2b-256 8fa6e35db8073e5a6b05117080c5a35a3942f7540714785d4119b1d1c2499f60

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page