Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for third-party plugins.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, and 3.11 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(int(f.samplerate))
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile

# Load a VST3 or Audio Unit plugin from a known path on disk:
vst = load_plugin("./VSTs/RoughRider3.vst3")

print(vst.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
vst.ratio = 15

# Use this VST to process some audio:
with AudioFile('some-file.wav', 'r') as f:
  audio = f.read(f.frames)
  samplerate = f.samplerate
effected = vst(audio, samplerate)

# ...or put this VST into a chain with other plugins:
board = Pedalboard([vst, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, samplerate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

License

pedalboard is Copyright 2021-2022 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.7.2-pp39-pypy39_pp73-win_amd64.whl (3.0 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.7.2-pp38-pypy38_pp73-win_amd64.whl (3.0 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.7.2-pp37-pypy37_pp73-win_amd64.whl (3.0 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.7.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.7.2-cp311-cp311-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-cp311-cp311-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.7.2-cp311-cp311-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.7.2-cp311-cp311-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.2-cp310-cp310-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-cp310-cp310-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.7.2-cp310-cp310-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.7.2-cp310-cp310-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.2-cp39-cp39-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-cp39-cp39-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.7.2-cp39-cp39-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.7.2-cp39-cp39-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.2-cp38-cp38-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-cp38-cp38-macosx_11_0_arm64.whl (2.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.7.2-cp38-cp38-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.7.2-cp38-cp38-macosx_10_13_universal2.whl (5.1 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.7.2-cp37-cp37m-win_amd64.whl (3.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-cp37-cp37m-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.7.2-cp36-cp36m-win_amd64.whl (3.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.7.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.7.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.7.2-cp36-cp36m-macosx_10_13_x86_64.whl (2.7 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.7.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 9b83f61a9fe3f65062cf694cdd8218a3f500b79f1b87b76ed684cef1269cc201
MD5 8bdb6278723b1fe4aee297cba959730f
BLAKE2b-256 bec1e76d98b0199a3a4a4e7c93a25a840b74af905a93ffa12cf8d38bf1d32921

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d18688dafd61c684f975b36bfb89979ee786387d07663af8736f10a69f31c09
MD5 1710418f4273fd20a05f94a54f3f121e
BLAKE2b-256 8a6243ebcc5f3fddaf1a444a659068e479344babf4ab66e6993b241b319610a8

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cdef6d848eb7ad4b98a2364d61d2b77728a0647db4fd8a523a7e6617a5b4a8bd
MD5 f3be5e430230b576f8fecf8e251dc607
BLAKE2b-256 ae307e63a72bf85bb1fa9b21e911e690d003ca7fd3b3be8cde07206d4522004f

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 11f61f55ad2398bcddee4c85ead279095b94992a8268979338dbdd9660a4f0c3
MD5 9b36a7d3d9d1be47507731772be17787
BLAKE2b-256 9330e564ef9d5929375c5ca6d4fb110739017aae7195074e13e003794cbbf76b

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 59386a003c76f4543bb5a66f06326b5a488586d6929c14db7ee6ea05b4e46632
MD5 ee25e36734a6523814918377421cc22a
BLAKE2b-256 b6838f1f13b6ff479dbdc7d2866da6b7a15958b349ac53164bc7e377fcc902e3

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0eaf0591475d92956de8fed68002f7631afa4ba35bf3f10715cb6ed38abafde
MD5 d121d71c6a8fe9051cff312d9d3f9f93
BLAKE2b-256 779c4d31ab68f11534932462bf3197a8c3e7a8e0d855b112c06a38b0d02cabd9

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 21194451c2b8429fa0321b519c4177f1bcec1c0b09f5aed9aa860e7628446917
MD5 a88c97ae97f896d199c6a5a0c7efa912
BLAKE2b-256 b7d59b13981e8062885b619e8253a4f83b2cec0a2f09b8f36e93cf655cbb114c

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1eb0e7c0456ebceeda12e0795fd353c3cbb3863b0c163c06666165ef18dc0d60
MD5 7d99b4bdbee75868d854d0a4f775f5db
BLAKE2b-256 0d651cc5bd327b553eb4ffe8a7956ae62a67062820a4556ef7dd1ae137476ca6

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2d2fbb246ed24fa57d1574dc7b280d7a527673c490051d6657fea108980b0105
MD5 2a1b02bb370aa43388ad4a9281cf01d7
BLAKE2b-256 5a9a43b90fdd0de1035a7718f90d0eec0e3b7f680edbde958ba4f3bc3dae7c27

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60adfb9e65fc21468fef2092e780b0732de5d393efdf00ca9b07041cfc8cd0a3
MD5 8b2e88120847d84c38c1d7e92447e045
BLAKE2b-256 dbb322e86eabf59f415cad58b5d03f6eb95eb18ee059513bf19b9708d74285dc

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 167be1e021656fa3cebcc09bf07bf3eeef699a30d9b6712bbd216169d6fc07cc
MD5 2bbac3fb8c0b3f8c10d9dfc04dfdaf22
BLAKE2b-256 b5e8e41535f983de9345bbd320babf09d063293fe4b2e74dbdb2e6420f9d468d

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c5d3a492ab9110d2cf34299190e1c97065bff8f50db4d9ba19ad1943f72c43e4
MD5 2456ec3d95cb9c2e3f14730ec2ffdda6
BLAKE2b-256 6c5261dc1704d92834937e95f29a87a65054e7e73cf969054a7f520d89145e7e

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1ab63e2736444a35c0a9ebd23950b38a9536128614850196f3268550b6612323
MD5 cfcbe0639a45baf11a7ebcb1dc92528c
BLAKE2b-256 be508d604d3c6476caa2b7c15e1caa373b204897befe1187e5cdb47e0dfa0ea3

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a8034f5cec0bc886fc2a4ecb8129bc32922ea22de251dca58e1111477ed849b
MD5 982e2536335aedd189dc4903940b9c59
BLAKE2b-256 088892ce80b369699c31b04d35f94062ce21ebdffb11fd3d4c0a497c61257446

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2e0050e8ac49710f85a18a43c309581c17a675458afb3c033f86a9774c8fdfe8
MD5 4b8cad8468eeceb69df8522737d72fa3
BLAKE2b-256 5cda70e6061135ceb1b0c7f82287f9b0f4e1dfb0f7691acd793d6696335fe2f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a7156ea5f4e6b40a04e53e0c41d3d2c98ebd20730e5b539ad2a88164988a819
MD5 1fb1acc876113351bc8f87d4b4140475
BLAKE2b-256 0341934b3733bfc44a391722458fb207421b398b7d5d486289381c1b5f9d99f1

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b4a122eadb8bed80d068c1f87a9c796443403fa7cc6ce3234777a871c86e54ca
MD5 fa961dc54b025a42165a46ddd8b71eca
BLAKE2b-256 467f1029682a22378250b6c01d0315a094f82cadb1da003daa43f7bee4e451e1

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 235649ca45eb000f2c893a31279a63019d37d58f9185101abe7b48c187a46a04
MD5 671dd3438a9c0cd9eb5a6177f8ab12ba
BLAKE2b-256 10049723931faebf5d80ae1c3331a45e63bd608a6c1e13e33a5c654f377a6a83

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 00765d1d39a8ac3c69fce709bdd1acc14b8c403a02e7f52299c2ec74599c93d1
MD5 5139af472ffefc56e52d6abd9026c4b0
BLAKE2b-256 72d65622b45ba71399dab2347ce367b81b1f0ddda285d8035256c00dc4799f35

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ae968ab8abca29eef3978c543c8c724b21a1ebbe56eddc121b7761816069d96
MD5 52f01b1173b20ee9d2f6c6ec75463c75
BLAKE2b-256 9dc58c3429e0faf554908cdb55eaa2d0a4818b728c7b00012ca390b1ce780d08

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fd760b82ded9df4576f2af578c2ff1df271047f588d446dec365cf994ac1edfa
MD5 be941656cd25c7267bf2cb0474813948
BLAKE2b-256 72b3d58c721e814db4076fe9adc886c2b3eebf40787cdd973e1c3b764a623985

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f58f882e7dae720883e4ca97c8419d84dff71ef03bb8966cac4bc1010c1c4fe4
MD5 ab8dbbd26ab1ba4176d65e227546038a
BLAKE2b-256 dc08337180a7eca75a41decbdf4b03464628eaa16dac15e8707361a792f62f03

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 970b5e8135b4dff59f4229e2ad03ecf080c4c7abe40a4416a0a2b2372d66a6b4
MD5 e9f394d0757a34d7ed3dfa49598564f1
BLAKE2b-256 1cd0929ad57bb0f3e405363d8827500bf634002859cdfeb3033ddcb8dfb7a071

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 e8022967e9327c3a90b2d807ddda2384652331675b89ee3acd7d22d12e0ef768
MD5 7ceae15084f832851a9921167b8c8ed8
BLAKE2b-256 10afc65e231384685336471ce68a80d8062a073f9e39777f923e50c4dbb6d855

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 223115af14512a1e8a873d6b946dba9398e1e2007a02e0e2b35633841ee0218e
MD5 b8e5fe374ff8a8823c0f1f505bd2b43e
BLAKE2b-256 8983ba8bc44160dc048152ec328bbdbb9f7e38cdb3b8428a91537fa9e6a4c811

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82aebe216a7b0c5fa6925ca2ad132e9236fefd66d24167401a70590f1966b4fa
MD5 bdfc3ea1c5ef49e63d6f7d19d925f063
BLAKE2b-256 09e73dd70003bf81cae56ced6e0f8b147c513b3b6ea66b0f47ff48dd972051be

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 99082bfcf4697780dc1e60a6ef18974470c5ca802c254fb53b9293dd8b0bc435
MD5 e4bb2502bf521151e9cd0356b839f61e
BLAKE2b-256 90dd4c6a0cc2e69a5c594b7d81a4afab82dcf925847c0356f0ec147705b9763b

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2a939ec9a0fb2cea78ce3b4acf1ba379e509d033a2163ae5308502456968a600
MD5 8437ea953092069c1fd14abea5461542
BLAKE2b-256 211358ccc6d1f03080331ffb822c6e4822ae225babd6701edae48e905a11d7d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f754f252155b75aa6e635c6805fb071d82f480798d72a17b0c5f07c297c56d36
MD5 a256878a40c0dd4294597b418a3d4137
BLAKE2b-256 4337e5b8128ba157c66680c1c3aa919e4c5cdc049ce40eb7dccbb9a877cc78f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 3e040f15576f4ded0c13175232bb029f56507096a0d723315d31791f4c89c529
MD5 b77d5a34e21cf476b07ba9dc603e5225
BLAKE2b-256 e566757ab9aa2ad1beb5fb70e4696f82dbb0ba25c55716ade55b8806f8171474

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e0b6e80999f451bffc8dd0659dbbcbfea34bb5a9bee9139f3869c29fe46b370b
MD5 908818a0a493e6fa98492fb12249f8ad
BLAKE2b-256 6af3ef3ce004696c63febb06f745e8d0ff8620a69962a362821119f5833705d9

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45049753f2bb5ed102fe89587e8ddaec7c29888e22e2c008c2438b6403ae7a8a
MD5 a209ed29d0a9b65435cf75d50304e782
BLAKE2b-256 91c69f58ed905bd7257b66decfc86d868014b0781ff4d635b5fc7fdf55b82b39

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 869c4fe95209d9ada68ad95fc6cf64744ca6249e91a0ca2c7dcc569cb6b0f52f
MD5 5f4db2dd15fa463b0a9c004c9570cff9
BLAKE2b-256 0bdacac119c6313e106f4ed326ebb80474b20ced424daf9107b8ae3b8c6f02d5

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2243e483eb9c16efc09720d88b16c2b7f2bf119dcc5e2ae119f38895a92647ca
MD5 4cb0ab282710745cb526fb0d23932dd2
BLAKE2b-256 8654e663b1bdb1ccd88018072a9889251c62c29cfa5d6597c0aba06a6d0802ff

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e0a02de177e2042c0697d0f0779e048450d3a2dff8047c1d8467bd9cfd67fc61
MD5 8e8c96d05aa81c3a29e2c554c687722f
BLAKE2b-256 92080c7864b64211aec44b370b38b94271b612cfa68d9ab11ad01f69a910251a

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 35641e44d05451ed2a45c11ec9ad54a5ed7e997f2ec666c57d700c5fc5ea3f11
MD5 17427a85374ce32fc18537be856af9c8
BLAKE2b-256 ac59589d3a69484b6d629a9af027ba18df1a90309ae36149312dbff582e2add1

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8c94ddcc20d3e9eec873c302e0e9216d78f7f5c76ba4d49597fcaa5d5523ae75
MD5 0643f0bdcbbbce51e5f1b2a00177c73d
BLAKE2b-256 0a286278c280ad03237306fce3090c2672b425f237333749661be4740545e21c

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ac1bf6612aebc420ad84ab6dfa7de9d10912773dc7a9f817d8888812b52f39f
MD5 29b68c8b2d1000036162674b6e4b2464
BLAKE2b-256 a73cee3fbf35369f998c1e963619f94ddb97c21161986391db7e4df11c22ce5c

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb400839f54be4df713c3b4c87c5baa23e3c77e53f14c6451681c3bfd9ccdf63
MD5 0c0432e20aae42f9c61f8e1772cc3656
BLAKE2b-256 b3d8955895e385ced19e8541f14d28f007453ab8d8e2962f6989ee6db9a94863

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 13ea5728b795e71779a339d96059d6e87d48dc821d6bfbda872b8c03d8d27355
MD5 2cbd97ee86a45e2cefcbfbf22bb7be01
BLAKE2b-256 bd83a0a1f7f967b6630b790f43a74f7397a5d66cb01c885ba2bfd7aeded42ddd

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 65eae05071bfa669edb0e025a9bb27eecc094e675a6536a41a7b70ea39838e61
MD5 8944c71ad5764138d9525a86ec8d4af0
BLAKE2b-256 719b931bac1b39ccc77400fb52ff8923adfd87c27f38b33fc696752316e857b6

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96a70afcfa7c52224372581dad6eb29f8b1bd3ebbac6bdd17005b16588ccc745
MD5 32460b441dddc823fac2d36fa52df450
BLAKE2b-256 ab2bc1e1680fae3c2fad86df1a6d97d9757fe8ca40c8ecc8affda03f957d02f2

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f96fef46b2c572294dad2ef84666e845553e9d32d5f719313bfc13b0ef8e1641
MD5 044339cf7255ee2c1a68874bf7573736
BLAKE2b-256 c13297c4f714f22c72dc3a06a6538b7b07260c38c2ce9651dbde34141678ec54

See more details on using hashes here.

File details

Details for the file pedalboard-0.7.2-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.7.2-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b7169e55b1a57e983819d8ec4f7e374c49d85e439c66e7a801d798e882d0b7ce
MD5 719e0f1d67b4861b30fc73682c7d5a65
BLAKE2b-256 5ea2c856f803bfc0424c2681fdef8f44401d531922031f14a4cd51c93c6212dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page