Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.8.6-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.6-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.6-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.6-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.8.6-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.8.6-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.8.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.8.6-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.8.6-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.6-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.8.6-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.8.6-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.8.6-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.8.6-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.6-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.8.6-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.8.6-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.8.6-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.8.6-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.6-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.8.6-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.8.6-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.6-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.8.6-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.8.6-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.6-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.8.6-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.8.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.8.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.8.6-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.8.6-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4aedd804be583f3e209044a3f8a7f344ac8d19dd76adaecdc614bc3433cdea3c
MD5 6f0a68ec6228d3b6d71a327f16e65600
BLAKE2b-256 74c0d3494af20abf8c0d1c5edac337715cfa6e3137dadef349f39bef6d2ea0bc

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11d97efc936eb75d2ab69ef71fb719aca5a0263989c5177208525ce5a7766aff
MD5 065e8a82dbda89c395ed0d73e306267b
BLAKE2b-256 ec9d7bdaff34c0696fef0bdbcf21593f248196d31fa7e37e213861f67b844ff4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f3481609907365b1c074cd4ebee991ae1de75e1e4d720dd26daf83d024e4be4f
MD5 ef43bab0048b7284108c6cd01231da8f
BLAKE2b-256 6b7d38d8e7054b6c68f459be9dd2dfe07e2cd0b65c67ca2ec9ffe47aa6683e0a

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8af5c80087d21b275c13b43378857e83cfe59a937fbfe808f1549f231b758738
MD5 ea0452232a0497443de2655b72bc8bee
BLAKE2b-256 b51b92e296789b45bc1c5726ebb061c02ec7d888f7a4ec1eaa64ae126f2ec2de

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 667cff82b4cd2f9137bf66795bd57cb64fc97bb26f838ec3c3964fefa37c85f6
MD5 afcd495fb4b704bbe50bed3b09c55cc3
BLAKE2b-256 d6e220e349465ddbd2b5af0fd85b1f206ab134e91cd30351d2420c8d264e06ae

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed6b97f136d2f6b4ad526e5237672069f3463b3b2e070ec1ebec1f2a55514c6c
MD5 dbe1cdc6bfc82e2d01d20f9de2184b67
BLAKE2b-256 108745e5ceb226ac81cb547be12e82c570f71ece920b5451c2c803d61eb187e9

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44f22be130303708b1fb87246f0dc38ad9b0a5eb90f6d41f94505aed755ff25d
MD5 10a8b5fc76682654f39d43d9ffb9456c
BLAKE2b-256 0e32685914276d8c955c334a27a3d36ca8b13ab2eeda4c43829fca1e04c3f779

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 071b16d88ba4796a78d0a5336a93edde4984d0a6bb995ab21efcede95bd56159
MD5 24c6b1ac1c0070abcc207aca34526827
BLAKE2b-256 666955d96e3152ae4fbc2369e7efe1b3536421f5fcdfb305cf21e233a010a8e7

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 13abff175458c85a73042e8458e673bb810a3835a12f2826bdd171972f7f99bd
MD5 dd309473107a5d6f94c1e05018ccf062
BLAKE2b-256 bb6957a2ab0303ac29d4a0001fcb97461cfbdba70948200b6fc24a6f1e20e4c7

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 118be3021c53ead94244d614306ed32dafd6ffc09758a95868817e7edab8a686
MD5 532f7f3e46c0264c6cfeaebf1d9a3d5b
BLAKE2b-256 2022573af67a6447d8f59827af226e37f70e492c9eae732a4fccc169c12995f6

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6c87eea0dc2431a98adc27462071d661f72ec1f78d508481138f5b8baa93dcc
MD5 d5369cdf17bcee1185225c7b80a82b1c
BLAKE2b-256 899c88e92aec1971681dc168ac1c482cd260c9c2d6dc37c727e1950a7b3c426b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 93f50ec1f4c7938000cda1ecc8b3c84791fc5c0375b35738dfafa9b0dcc7729a
MD5 3d73df2d889c0eafaf9ce5a3003022b1
BLAKE2b-256 56563d9c40b04c288eb2437c82c43f2bb32007a833f02730126cb4fa26158c9a

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 49dc342cc0ab486ba281a9d866b31e1697ce321554d3ee06f1bfe25150b27baf
MD5 5037a233ab6a14e8b48c37a26db00291
BLAKE2b-256 c7638b6fa2776fb20ba3d840c9eee7c507a5af89a849223e7983fd64896744f5

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 38b155895359dfa4e895078334376efaa87ce39dc658766ad0b457dc4e498239
MD5 57f6c61f39da29c2c3bffa19da188bae
BLAKE2b-256 861517ca16abb7524cdc7d6e8f053a82b5bd2f26a0e1ee41510f45a05884554f

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ee42bd10b34e0b95eaa389855e9ac37c1339249b52564741091206a3a67c12a7
MD5 2c6178bb8459c0f409818a8463e8c5a3
BLAKE2b-256 379862afb2bd301d8115694e86525c3b0adffba5c0a29a12ccd89e95bf2c7388

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 615d935e0c39d47c92437653334473520c1447ba6f056fe8634971899f1e311b
MD5 b03b16618234d3d69a7b32b76339a20a
BLAKE2b-256 6241e6016263b1012e2764c27a95d0805f3657f06637a5102b01a74bb4fab6ca

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e72b8efb5273199efabb4dea4f074a99bffb9764535e789d4d3434cb24fe751f
MD5 e607407bf906e9ffd4e9898ea67b43ea
BLAKE2b-256 482d83017e9023ab979e23631e4db1ce0fc7bb420931059f27c2b49acd934801

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b7a4ae9567c976ce88ebfc8c55372f16ec0338ea6710f86a45de7544e3eacd74
MD5 6267ab144f6270086c3098447277f2a0
BLAKE2b-256 08bda3cf035eefc4160ba46a3dd187a8f53fdffef674e89a6d523e174125ca7a

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a44d744dea0ccfd1cb3958122a38105bc0817fb11e67569b4fda361321942f90
MD5 d7d98b65c7b0c0c9ad2dcbff90a719b2
BLAKE2b-256 70d51ebdc2f285d557085fc94d3c9427402ef0ca2a0c137959cc1d48f05edf81

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 12bd9ab86b79189456d4c50333dcf8b352f70090921c3903bd87a38b31444bc4
MD5 089447db73754f406988be95e3d44724
BLAKE2b-256 3146f7c92554381d5a4d6c649457afb0e2d21ae10c37175e1aa70e76f675c3f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 be73e06abd8dfd806238fce67e772729f0d699996631eb43cc238c355fec5960
MD5 5bb017742ec5ae3298ed929f2d494c20
BLAKE2b-256 89ea8076466cb3126da10a1c3ed403a52bdcaa1ac7046474ff8bb81092927327

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b4114c6ceb7e65b47c0436fa911b1d8976b7c04537b513f466cfca1dfbabb4e8
MD5 368158b60e092aa322d94da1d306c57f
BLAKE2b-256 6183f3d212691495ad4a18b4daff52e628908478d4217e490cf4844f624dabcc

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 8690279e6cfa007968a004839bfe2ff2dd5718135aa7fb1ab1bdd4a951d273be
MD5 e4d6003f61f88bba3fdd57d5d81b3289
BLAKE2b-256 69220e08686ec7eb5f290cb1519f278400a8ccae5abef20fae99fd56a7f4003b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c45b51f0c23b1d35e9f919dbc7a4f07472751fb078742aee890ea09e797b6bda
MD5 8e9a72c90978c88fb98dfab7d0ba4aa2
BLAKE2b-256 ec8b01d72b4997b4a91bf01634882ca2152c1cd09d84aeee6b74a6b279f0db13

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 14214f971b804dd9790169964ed977d917f0b4f603b081da3731983f5720ffbc
MD5 7cb38f54d67954f67180a391b9b34c0b
BLAKE2b-256 f69f292534d2d5e2485fafd4580a868f2eb03fee091c9688ffd3ce3de6a57c9b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d4899694065465d9f0c587e1283c0696ecca79ecf7bf42e2a541878eac9c264
MD5 0358ad08ac0507959bdcb4dacbfb196e
BLAKE2b-256 59b86f82a40c973c8807da216aec535200a3cf7a153874489034cdd11668cf12

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a08a94749314d547f50ed650cec8e6a2e962649128dc255bdf7c0ef39fb16fdd
MD5 6f68d8daeb4f48b65e2043e5d20390a6
BLAKE2b-256 a163bec6be2d2a1882c744efe4edf30d12e2ca5ca601ec7179f5dfc09ffe4fa7

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 be9067f6d05c6854f1e92d234d7d0908b418676a12af7d0c0d20a15dfd4a87ca
MD5 b1151861a7139e7cb0570652c6b7b871
BLAKE2b-256 59006674b1fbcba253fe0bd21977e56f0bb5d812c8e2637bcf607f9572c16f74

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 01e02fa04508ef4dee81254ec4ff3984d2516db0deae74c0d2fc429b017c373b
MD5 c18dc983c35c5e4f62ca9fb2c53364e3
BLAKE2b-256 f6fd4195c767eab85c98e75be3a0ee7f319cb339e323abe38bd5c875d93a27e8

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4440d4935ef492ff7479e5c762a356e366559481f7449aa04d49ae49d880caaa
MD5 4b0934b6fffc70fdaa221124283ce4a2
BLAKE2b-256 17d90eb08e57381e8f9347b27bc37ae4c144b1e7fe5caefb779f7438eb1a0474

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 7476f8f11e99001a525088674cbc71d4f35928a96d06b8af17221395f90eb3a3
MD5 42a31df947961b87d740d89445ed8774
BLAKE2b-256 36bfaec89e88eafa860efb7b9266546eb3f0615df9a93481b431eed284c4976c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50fcd0eaa29bb2e5f7f8d32ab1f39b46e861709f34eed0f467943d252be44db2
MD5 e4c55b68357e7d847cbee1ad1f260243
BLAKE2b-256 22fcfbc8f9f338ba0f313badeed9bcaecddfc9ffd530db0ae0e0518ceae35766

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0ffb1f16430d550a1a1ea8d64e5a7e4fc33ac6208b7344585ba27ad7ea0dc8d6
MD5 87110570c8d8db872818d5b949b3e748
BLAKE2b-256 2b102a37a954561d93b1d19a03ee2182b912c1d88cb86b1110ab868f5b9ae6b8

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f4cc3f1fca0dc8e9a0bd5d57cf278fb41d3d56a3cd0df0fc9c33d061107be2d
MD5 d2fca91a76608958810053bf2ccd6ee4
BLAKE2b-256 d2810f05b9621d4b18c420c523451d8c230990b8a7d6fe8e152c5b66e76d16ba

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 df51ca3cd844da7b5d604c0a93304cc8fbda288466158e8b5a9bdd0db03c9e32
MD5 1e4c7585a30defcfa207ea1dfc2b3123
BLAKE2b-256 c22cf0bc6d4935b333c7c0c7bea386a00d3f82996bab7d825d0806ba7905deea

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 b6d45bc25914a519936cdba9f64b250b531aefe87167faa1065c63e4a2620137
MD5 a2ada2302d825b590f2db93c55638851
BLAKE2b-256 9c5a958a539372505340f6d379b9518f635fbd25bc97de2d65d5ac4bceaea15e

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 602f477e0af143bd4516917c1a615343895d120ad76f4dce34de2930e24bf7c0
MD5 f534e9d3a7b04bc861a7011574b159e7
BLAKE2b-256 7b1e7ed363c62ced2f58c53417c56495244d7723550aa738a5e5e25145397c93

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9beee01a49997a3a5881278bd84e0e9527c64d62f9a6f2f53dcafc77c2856b57
MD5 6f781b7c2b9ddafa9876735f237c0b50
BLAKE2b-256 58429b65c83a2150f8833038d6995f6fbf8daa300d3d29ed07ad6477f5e96c2d

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 43b7cdf2b454f4252948a323930506e67139db36cdba803a1920641202774998
MD5 8e8f9157b201ba46e8483fe0972d4573
BLAKE2b-256 b155bdd7b40c3eb3ac3388a52ead408436f08df764d4b3acd5e2b0ba06418772

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7607c105cfd8b3b7fd36cb02136bcf72ae993fea142a2b53142532cba6aba580
MD5 0b346831b456c6571d0f9954cf8f242f
BLAKE2b-256 71ed8ebf19249f0ca9f42b1799425c143ab0a4f37779022a6ac42b84bf586efa

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 84ff0e0460418587c1d6f5845e67677ac91634f1beb43803c28c1ea8c8361a47
MD5 4e2bf7c3771a976cb44ffacc1ec117e5
BLAKE2b-256 1b588b8bba12644a7487458eaf21ccc8b7f6ba33cb04d6fbe38c23c497b763d5

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 fb9793888925cfe6a093263ad4265e16dd0f3c34bd4fc84afe4afef0e71d4d88
MD5 c31b9be901f764cabc4214b14cba2955
BLAKE2b-256 0aab3264fe12ac30da657a23304288e1db6355b477e971310b04206910c25d83

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e6eddf744a702e993b11d8397edc86d35242c07a4d9678d632c4fb983f0b4b7e
MD5 ae0ab70a109652e49d6167492a337b46
BLAKE2b-256 91f5898c86d6737bf46ca3683df77f746b394e0f06cda287acd6f61d058b40d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9cdeae29329a3951a7dc4b9671eeb387d0ec43a62087de6c1f723651125c9597
MD5 4473f3d189a776d359168322412822a3
BLAKE2b-256 ed838e860e7e298032d8a91ba332a028e8f65e62f5d2887f25ede0af1c601a21

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6299c9451cac3de6f14916538d11ca2bec70cf38cc281cb8632b4776ab26eac
MD5 20362fc6fdc3882a1399bd3fb405d3b0
BLAKE2b-256 7010d67343767d39fd79313f1303c50e78a871adfa402d2bfb9da7e143e70c84

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c77d3fbbb75f9a2648ff9eb7274328f5387181573fb7c7257eccad70a4d7020f
MD5 8c2aa8086b322a2da68337b3e54eb5ba
BLAKE2b-256 57c4855fcd872411962246af39e77f20fce88dec7f0df248a0cd9f6a2602c02b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 c730977657838fb091afb910c66c922c85f6a9ca908659fb9e4ea8b0bbf650e6
MD5 9e134430b9feabac6fef52d275c7484b
BLAKE2b-256 d7ff4cbef1872b4fd388be063a7709cb3f7c502183b7ca408954f305b8a240cb

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 1ce498ea5a861a8809f1472d78cbd58cdda35d36db0bd160ee304fc30016991f
MD5 a38f77c7459c4b47415ebd63e074b39c
BLAKE2b-256 f46cb7f88efbcacd830c67540911cbd37ef6e73935867266790f898d5582c1ce

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 941f7ae898314215324ee2145a22f226b8d1ca28df2921d14af62d74b7fab822
MD5 fe57fe270afd38eabd63656d704e05f1
BLAKE2b-256 795e35d58b80274f33f17f7ffec0c71aca299d52fbef4f554278d7ac19fbca8c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc8a221a1bf81ab4f665b766574cdbed6db0871ca5b87ff37867e3a3b2be512b
MD5 92d625db270978c19a4a67437c4ca60f
BLAKE2b-256 df0e6d680e24e711f8368e28cb37307017beb26bedd052b6a66687fcb74b5a95

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d794b2a5e784d6f0ac192547444d3687e104d27f9562517540dabcd5c3e222b5
MD5 5af24dbea98a705769806095bc07df5f
BLAKE2b-256 52ff760719a703d471a44e93b1104f529baec6811dda720b9b06f3e986af90de

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4c0a6854cbe4a9a03a7efc4a009090427558fefd01254646c45bef1a940c5470
MD5 3263061762c249fd9a907afb94ba59ca
BLAKE2b-256 51b99feea28f7bdab5f1a26a63a8ce6029a6dd97ac6a9676d9f83663cdd36150

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5bf4423c8e07f6ef4d68ba1e785b819d250940c89c27943084550f4813a4d534
MD5 28445f63ed3c6063c48f43ac1773321a
BLAKE2b-256 b8ad5dddc989902a6baf2b65620d50ea85852daff765f248bd756088dee48bb5

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a10d7a6194aca0c26ab1854731ef4813831cea4d420ade29d51b85aa6daf3831
MD5 07f8ee4e6ffbfe59d0ca175c3ff577a2
BLAKE2b-256 f0de27558a623b0bd69c0c4e1c2cbdea25e9a6984b8e12c2008d72747f0d5a90

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 06d637061c1c3a1be43efd6f111c5a284310bd80b5db68b1bc1f525e0b21d065
MD5 69df52441d3b7ddda3588e45490d7ddc
BLAKE2b-256 e121889b518f1ad151a7e147c42807e2033c139654f4b50c47f02dc1cbb742fa

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.6-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.6-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 17162f4e5f9e3e3c18604db4ca94f4cb0cb2528537206481b8877657cc7ecda0
MD5 26a3ce1d97c9ea3ff54b8831c645bb96
BLAKE2b-256 ed3db6a512d4265650fb1881eb87e16a867943f6526d5bb7fbd4e56172c07170

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page