Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.8.7-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.7-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.7-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.7-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.8.7-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.8.7-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.8.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.8.7-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.8.7-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.7-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.8.7-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.8.7-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.8.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.8.7-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.8.7-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.7-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.8.7-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.8.7-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.8.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.8.7-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.8.7-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.7-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.8.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.8.7-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.8.7-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.7-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.8.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.8.7-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.8.7-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.7-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.8.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.8.7-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.8.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.8.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.8.7-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.8.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b00e7856937c0d195a5fd4f223989be292820bcdcdaf5e170b96fc11f7df52f5
MD5 a094e9363f2dd9f7ca657d4c7963bc50
BLAKE2b-256 8de269b48f92139dc545bad7d6c584952e9d008b4885b54186cc1301d3167f9d

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f5d70d95dbfff44304f597cba4e5f340122a2966fd067164522c4775d9a41ef1
MD5 5a16ce135d6b38b4e574dd8db99ed277
BLAKE2b-256 b94f3c79f7d15afafe2aa5f5cb06faecc8d83fab922fc195383f8302e8677620

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c3605351ba2223e0d0f21727abab547b9a90d6c2783511c7c6a0c345d893b39
MD5 61b8a889bf4e59f1ae923a056b00e551
BLAKE2b-256 2e622532f7237f96624a53b624d3960378903d86ab665a31d72430379ed34bc4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 28406edfcb83ab8e1276077eed9a9224f5c0c195d8a7e5e38eafaec3e46562fc
MD5 81d7beb3dd5ae15e289f27345057b368
BLAKE2b-256 bfacb20cacd0cf30695dca4aeefe07a7aa1dde3ec4cfa78e9c18ad63a63c7ac0

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6e3d2a9b4c8acc1ebecfcde9b3b0d2e7a8bbfd3cfceab09e19b996912dcd12a8
MD5 b2773986f554276af285c73776aca9f9
BLAKE2b-256 8c58b2ab6516b214428fa84fae2bf9f4fa040e5671f86a8acdec0a6978a86210

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76de45b3589822c059d6505f0bfe714278646b34f8f5996756d8b358319ef75c
MD5 5ddf7b0278fdc4c4105980fb74c7aeb1
BLAKE2b-256 795846c9a96aa339a21d5f87335022168b11c782c645b119fbc0c1ae0df60546

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a8677fd119fd065d1887088a1ff7eafdbd7e17a0bf0ebeae990660cc038b631e
MD5 da848bcb74bb7c835ac2846427096a98
BLAKE2b-256 66d527fcf644eda2b3e1b62c81a1bf4683553265b6e097d31b5989491652cd03

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f5663de77989de9ded322a98550fdf3248f1744dd6c66c9056126cc140cafc4e
MD5 ab755d7621036e2ee25517f331959f43
BLAKE2b-256 f5ff70d7addf6f4e29430d701da537b1ddaece4ddefb20cdbee894b325a1971d

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 47fff71800386998692c5e805a8ad6d3dfae2918fed4b7a1a9626f5411244d11
MD5 56b53d7ac24e2c056ea5fdcd5cf8eae4
BLAKE2b-256 e20b698ddc8c7cdac27f4620afca7cf862342af1b08aff793e068dfc6a020112

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eff7bc7400137552b0a288e4385a2550f487593fc0525fd2e723b75bcb45204d
MD5 b7e08921dee8563f9919f7b4ae4b6a5a
BLAKE2b-256 3046f6c845e8f92a47d3c8641bf4d019453a623c7dfed3d128cf61601f7a601b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa73a64b58f954d2c320bf2c42e537f1775fb95eb406e03d3addbc11aa3faba1
MD5 bb5eeb71a0bbaf649918c1059225cf50
BLAKE2b-256 a25f8ea7a7e512a376d7f328ee20d5b9ea47ad85225537a4d052aaa75e16e069

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3a098c17d9e76eb45fed1d77803a83cc8756205a2359885e7e848427b453c301
MD5 119469a34e6eb9ca1bc639521b46724c
BLAKE2b-256 cd97e3212ed0fc7d83caf08ef4e0731d92285705e69c495ac2f893ddf32d0f29

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b29a06e30334396b6890d521082de072132cfcde10d1972c7d904916557f3375
MD5 f09be345ad2d9d4d7c0bf92d42b3db7d
BLAKE2b-256 4c1f70edd770bd89c356212d47f8975e30f593223f42f77db404ef39d7a3b515

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fe3459e0c45ab557441fd7b65843e4362a8b602cc5437f7e47c7351ddd9cfc9f
MD5 c644d2c906c5b8aab213ffd286606820
BLAKE2b-256 b1e9215867548254f5bb1922cc1a8d99e77c7e219921012ea222c059e09ec907

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 852292b50e4b4d19172ff16b8bbffa82f2d128bde70106124846eb365d31c2e0
MD5 a73f54639caaf0f59dba2c928c02a245
BLAKE2b-256 1a4edd516345d80f4db5cac9d6d05341042d01f1cb20693f9d45333e0ad1d7a2

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e926cc0ba86ff61a2c4020361bd5814eebeb30feaa038a8f54ba8a913951af6
MD5 3ab4abd2bc879c9500febc0a660c7387
BLAKE2b-256 85849ac0a2020e46e35a7087f7f2c923e8ca5d632edb5c073428459915e7fd48

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fde02b78225bdea726877f831e2f82d67bb4799113f4f7989663308f78e9532f
MD5 35dff6a1a8f26cb5e04dce25e0c00650
BLAKE2b-256 56af02336c8643bb1157f13c10e2538fb2c2c5aa22442885829859609f0c31e6

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b27c1c2b7f68d9b6949b9fa2d52cee6c9e30938205650163a13a7a773c128bd
MD5 012f8467c81887365239a81e4ff6b901
BLAKE2b-256 6d909a0d3bba85d3c63daac5179acf8a793c1ce7b7f0df802502922d76253ab1

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7dedf3a0b6ae3dfa0b24be10acc0fd1f06d89462bbd84348011a4a61130c74a1
MD5 5e84cc222b615247e9e1bcb3b1e6d156
BLAKE2b-256 73edb3ca81ba028744c41915556773b6390a1c6ab5dfb45c8b94d54eb3e5b199

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d4d01f9814964abf789f33d0867afc1ff24ba566fd253da0c545fdab5023c447
MD5 45a53567e0a99545830fbf4e942e2e69
BLAKE2b-256 169b905b29e85ba272fc8f4549b4a3d9e8a4a4daf38cedaf4527fe2c66d5163c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ca11e2a8f297ebedbb220269faf1b9de06943105cc006c34b9640e3eaf56d0c1
MD5 2257017e0dfd5c8bc2ac0cdc89f5c17c
BLAKE2b-256 6392528c31dcf41b5ac0cd7d82cde58580077950e2ee8e2218b994f0c59c76f6

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 45e87318787318a6a418faf28c7848b1f1024a3ef3f1a1628110a8abd06dc5df
MD5 f98bbaf8bd5a4ff0c27a6ecbf79cb4df
BLAKE2b-256 7558e1f0a2ed1f5096a6e405cdb452513853a6b7a53354cb1e7a928467c48932

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cbea42e4765cc63ab46b56ba817d147692a592ea6812f9dfbfb93225a697f6c4
MD5 002c3c01b91b5837d2e99d47baa81439
BLAKE2b-256 63fa03a6400e27a20751c4fc0d27aa733434c8b1eba84f5e243f06494da2d648

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 caa53acf29b2f088b4ddf38bd25ddedd3f0de3f5a3fc7fbc57fa70a4c1eab198
MD5 8fa5f77682693d9c4519ed418be3d901
BLAKE2b-256 8502ab6c0df880a775e59b279da53cbff5b16188256abd761cf612b6d7890f5f

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a615ffd65f677c9001b79244dced3a60188191ba23313177a154013eb40c1c74
MD5 d2de574a376f937763e58c35271ea80c
BLAKE2b-256 8e25be5e2532e8871d7d8500ad3eff33133d0aa3618ffbe0aced365b6bc1918c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 de8516723f568380baf998123573636689e7be26ff489fb95df6cfde644a7b6a
MD5 d49a5e831b2200083d1dd731080c803e
BLAKE2b-256 3a15a9514bd88682152b442606b86ab18ee8942b2fed72b2371d988f4bc9dca8

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 eb54208ecfdd017924400a315f40774ff8242fb7b558ebfb9db84f93b4f8595c
MD5 05b379d3fb580d746e00c4d01371c806
BLAKE2b-256 4dc9c64388da08f823ed33d1ebc9956b2f1ce22f6dd29865fa10187d2b55b594

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 8d8dce77632d55687f2722f7a4c6ce5d3168525a83d5893769d59c22ed87361e
MD5 5389ad49688af8a9b3c5489c5c03d872
BLAKE2b-256 e1bf66eafcdf7748cfbd0a5ae78dd7079a9719095cc240d843c42b9d9e1d4b10

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9b4e4d9410f62470dbc5bf67bf5a45f427cd27fb1953c923efbd71f4cfee1217
MD5 83fb9fd6f3d12a7012ce239deb49463d
BLAKE2b-256 989095d2357a41fad3558854c849133aa1fb7ae1efee608f62fead14a0ae6797

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 70d415111d9f00df00727d9841a76b4799c279ba4db24f7d4fb0ed53d0385add
MD5 80f72116d0aa6fa96db2154108f5c448
BLAKE2b-256 a1c3c4b0ce5dec7aa056468e24dc2e85a0b297ebc587c1dc90ac6ebe546e314b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 02d79a8b1dccf807c96cfb56439ab34f26b5e7cb877a01e746a1288f12d1cbcc
MD5 4fea8822a2009efcdba56f737c98dda1
BLAKE2b-256 d8188176a269af97f016e4ccb76eea3646faa5ccb3b3defcda877720c05487b3

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2b7f3f241336b321aa1ce598c8157ad9c934abd67670729a5d97a1906c8bc4d4
MD5 fcee8b9af30baf447ec84bceda069184
BLAKE2b-256 ddc00b07f48543cf35ac824e30d2a9b85693ee9009de59e203f2a9e9edeb19e9

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 720633d61afa5ab0d16aae2f70ca1e830a135eb52aaecdf7fcbec70b0f9e06f4
MD5 79234c83f53b7b56113fc79856c8860d
BLAKE2b-256 16a4016268bc2c42d5543bb7a9885f8c14dbfb99fdb73b385f33470505529b03

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23d1dedf52edcdd559ca07c1e6fe2ea46730edfb1bb65fd89874651af39c4c36
MD5 b588cbf0d9239003059f6610ea8eb065
BLAKE2b-256 0a00db5cfb257efa122901ccf7950ee2d7c6869af11ed150f454f27307267324

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 929ff0b5628f9e4b31d9ced901a358d493a51f1123c04f4dcc2975b5a6303c1a
MD5 7d6a8ed72cfe8fd0a8cc346baffaae37
BLAKE2b-256 bc0275449f9a732b2fcb58a8b8b131a07656facfcfee411cd3020fdb5a9c9279

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 c74c5470204eeffa05c40cb4d1e1376474408aede8e144ed0a66c289c468a6d2
MD5 30d2fdca15a803112f5285704d6dc446
BLAKE2b-256 82de0190c4164c1d27a25c64f23c6a7d96e0dc2dc223b96be966fc26a7aceac6

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4c21fb5d10850f8f7209c513137ad4f12894a7fe3f34f96c95b59d9e8371c5d4
MD5 8f3d25305669d9a4eb703b9dcaf8cf64
BLAKE2b-256 779d1439b8827420987a8e24eee6f03756b57aea7f765b19e4e78d480892b4f2

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdc060ec9eeffc725c920e2c45d0ceb73f8ed7ac9e08906bc9e58312ca6a9989
MD5 1f8365af45a541a587fb9bef6d3b63c1
BLAKE2b-256 23639d067dd8940d4c7362d4ee5467d35a64572d53a84b3d920f877204898c52

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7a82526b292a68ea030a9ba3a37a5107a5463d5a754f3061c399b44037d2a343
MD5 d797de6f18a21aeefb5f35d7cf95b54d
BLAKE2b-256 6cfe2336de6b3b54c8e6ea3b79408719b439e302bc4ac3fdda150a49ff472963

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a2aa043abf7872f0edb11aa756b0cad2e0ea0740e169a33991a71bbd81181c85
MD5 74243410645f41801fd0a9b034dc5dda
BLAKE2b-256 a13697ecc70afcfc6733c35409a88873020e8a2fdaaac2c817fb31a134128c82

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a12b2d3f92f5a210fe425d9c7aecd9374df5895785e55f453a60964858a7d3f2
MD5 aac2ac6137df88b89224e7051eef5b33
BLAKE2b-256 851214d1c0c3019d113226a2fbeea28845b408de6d68b594836ff69face26217

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 fc16dd22fe7e690053327f5cdac3471ae0d50379804565cefde703bf49df207a
MD5 400737f507e626022f7134738e183538
BLAKE2b-256 397344af2846fd33e7a1e26476181f34a510a5d864a2b2e6cf340a933eab23b9

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0088ffa16286a52ca89a19df367984e7404d1ca509141bbc463f81a6eccba094
MD5 f17f765d157b3ab184b56585558b321d
BLAKE2b-256 919071e408d31ffb12b60effe5529e81373b1e32973b9d3411e70dda6b20a0f1

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3414eeee55f37eb451f916207956d085b3c2c8c5fcbdee7353fc51c88a339984
MD5 6817ff7df7fb48adc823b3dff7bcf655
BLAKE2b-256 73c05478938fbf1090a77431b89f377475ee7d5250c30cce9981675a237fe595

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03affb50a3a1454abb2d467c8c9616fb289cbc365358c4444b485589679eabed
MD5 1143647f39bcda423ecf82a8e49e6c23
BLAKE2b-256 782f13ad97ed65c3de01bf68e9f63f64a53e8712b85df3173135f523d783f4d4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 378797016b5a471f697486f585ecdeccdb579147a40582f1d6bd38c82d47a6df
MD5 f3c58cceb2bc891457789d8c0dd07d9f
BLAKE2b-256 3f4ad9d3c42d218261afd6abb33190104c1d74b4fbace7efb5b5d0c8cb07e8c5

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 a09c70d0079513f077ea6d4b643f4d2d8d2383fb7bf38234e98181fe07e2ec0d
MD5 278f7d0d627db3eb7f7902287e76f4f2
BLAKE2b-256 2603ccdabd410556a97dfa8c29266ce901d72c725e7532ede847658f2ee48593

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 6618d7b3af694194bc13c20beff3891841dba79afc53448df6991ba7aa54b8e9
MD5 d58293df28243f12091a1a37ad94e1a2
BLAKE2b-256 ac1226559766448bb774cfbef1ec8ec0de42d74be04373444efaeaba73619b68

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5e9aeed7821e6a146b04a2d386fa6d25e65700c15a40751d77b126329a745bfb
MD5 b270e2a939a17593b4a855f9265528e7
BLAKE2b-256 19a5cf55992339eb5874d7fb99ffb66fc5514fca484e2728bc698ead4039050c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0fb6d825245025adec7ef8956ea421fbe0b565366a82ed8b37d54449f82c916
MD5 dfc40128d1f2c1bdc51c7c5a6f2b5d0b
BLAKE2b-256 9faa59664dca9179b70949554e4fc242c7ce155e5690cc59127bdfa2e0dc3d8f

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c4a3b7ab8bbe89d0c573a61e7b80059914159442fb6116a7575658bbb54f0a9
MD5 c6627e1d70f72b4efb4666eccaafeb57
BLAKE2b-256 302e0de534d2a8cc2a59feb74d57bc96947965484fc67fd8e87b4115dc13b399

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4a7d4497d81b4460dbc96fc97649b9fa14d6162262498150f92e3d086162a67b
MD5 b28d5fe68fc29893af8452162dc38246
BLAKE2b-256 7e774371aa6e748596b151288bbdec7f3cbb35e3e7e92d3c47bb09abcf1e1c48

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 7566088731e1941290a38e3bc522cca3fc9abed2dcfb9ccaa31047e77fdb82eb
MD5 4fcd73f16831c934e47f33cb51448edb
BLAKE2b-256 c817e2742e9d38627f14c62cd9f5e9e8ea1e3d04c39157631e072d5a5005dec9

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c32be565964b46ba20c37612ca63d11c0c535b3d22465fc37421e9f77a8372f2
MD5 272c33282f017b4e4ea44a7b879c8ad9
BLAKE2b-256 e9ef6ee1b8072a8170a5ebe98474b44ea427b907a433e757eb1bc90c41502f5a

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ecc0f287a35fd8839b3e3d2e6c4dcdeb6bed49079d7a234cd11f60a9d9d2b137
MD5 e2059782ad648a08f988b8930cd9bf90
BLAKE2b-256 e26354469c4b09c367230a498fe47f5b2b6d2aa442818185a45fec5e77306473

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.7-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.7-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3a667f1959ee19e520e97563088d3d0afa43784f7d6c2d42da3ff2a16c198885
MD5 20362d34ca38483e91ce22329aa06e9b
BLAKE2b-256 82dc9be756828c9a6e7dbf2b0ddc475222c20e56a0fdc3b97ba56ddee64e9e96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page