Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.8.9-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.9-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.9-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.8.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.8.9-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.8.9-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.8.9-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.8.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.8.9-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.8.9-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.9-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.8.9-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.8.9-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.8.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.8.9-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.8.9-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.9-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.8.9-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.8.9-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.8.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.8.9-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.8.9-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.9-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.8.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.8.9-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.8.9-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.9-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.8.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.8.9-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.8.9-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.8.9-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.8.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.8.9-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.8.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.8.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.8.9-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.8.9-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8fb71198194c3a8c8c4ede9a5df55b49c551f419fbb64bee4e6874f57cb52fb0
MD5 91723ef97b14739d04bc66fc9f6600a7
BLAKE2b-256 7ec705fe321ccd6e4a008c8d8401fa467479e67d3645f891f6085fc666d8f39d

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b0060040fd353157e059ca9eabfe2384ea71c4ad62680455bb897a4e37d61054
MD5 fbe3c93c1fb0c6007615cb0cd4404dc4
BLAKE2b-256 81aa2b79069bc6969463df32576eec7640dd8422952abe4c7afead7c7a26a27c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2959711ae27a0cb011d2075c833ee5ac500872e87e05ea194f9788b0c8b83fe4
MD5 f11de16b349c37e85ac99dc5a69b6b00
BLAKE2b-256 f81951cc45b9f6ebb77dbc2940e831a08e70db2029fc677769c0a4bde5fa09e4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ae12c3c6d21a26b0770e64d6cbf00a9f7b916f2868f8359df73607c51d37de77
MD5 8ac6795be3ee11a63633eaef06c911d9
BLAKE2b-256 f8668ad73ca26d910f056f2612c1092c0e78266edd313224bebd964b7377df08

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ead979a8eed358f98fe1352b9ea1f84b2d58e7f7073ae3d2112e94f98b46d64c
MD5 15c42d1a6b8253aeb4338d7fde6a5a05
BLAKE2b-256 ecc91cc7e11e08c0280dda71e61c754c56cd2ecba969523fadb67a6c4b8a8e3a

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a887b406fca7353d18eef2defbf0c8faef89032185540064cd8df24c662de30
MD5 b70c1fbee5b4ff1bec5f3bd5e9819443
BLAKE2b-256 f2aa07bb300e1029f5f0b02a8bb348b87a79074f1c0123039276d472a14de675

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b7d14e402f1fd06a0e996eec300d8aa014ebc128e81cc954ab51e8042349c3a
MD5 3e80a26664f2c42d09204760b1b9c5eb
BLAKE2b-256 62afffb7f875948008514635ff28d3f6cf8ca936c4d33242cbe15ea242e0e0a0

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 561bb7863b0b62b7a2e04dac85e7e916f4492d6bbd9ce23976d5d3014adec553
MD5 523f60615ef4ff494ea04f01c3cae11f
BLAKE2b-256 ed7cd8fc0d2ec5c354b0e0fb9b387a1d6d9e3f6735dc26f37fcd9598fe5478f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2f758c957a2f647bd7a9c40f8b633b8eff98604b3626001beef21c1fa1854999
MD5 8e7b7f1a2be1c801d8da763563f09bdc
BLAKE2b-256 a13f15f709578728783a382c04d4971da9ef3028e1d3c0dcafdcb3a6260a0cc5

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c40e3122c7dcffba6aac78b2baf7f23be04eb967522a12e4646d7c25e67a4413
MD5 8ff456e057d1d484c711002d0c2b5abe
BLAKE2b-256 a8da4162d3d57e884f6a6d7e45787bd2c33b0478f1016dc35c95a212946dceb6

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4032312486826f89964bb93cee379bb84b420727a71ae5b90322c32be8cf5839
MD5 2081f96635a6524fd0fb45ad28f9545d
BLAKE2b-256 33f38a84660a2ab2bc45d9464baed6e83201f2c646050e70d6836891a40eab0e

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e62501bac002ec96a37104e7d760a2a43720a7cf12d761d938a528ad7da53995
MD5 fc9b5283917dc5338b9d97f31af45814
BLAKE2b-256 323341d65379ab5ea4972055dad74edf1e3cc75a3520a24c76d0aebbb93198c7

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3396b9c28879a3f9168e2ceefa643ff1b183dc22f3635bffd0d58a809d24665d
MD5 8e5b52bc20932f80a700dd289fbcc4c8
BLAKE2b-256 0d91a3e489dd61cabaae8f92e3826f37ff7e47d7bcc0d166e72ef687297a5863

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed57fd747b9a2bbb8b281ef9f5ae40a1680adf4cb7e26f79b6e348eda63e1f8a
MD5 e6afcc004b10433c00369db5a30d28e6
BLAKE2b-256 48c6879e38dc778398937e8b80c0b37515742979a7ccc92c3c53167c64c71c71

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 93c2c8073654470887c48be58570aac6bf610c8b81778bac5c909796091a503c
MD5 a189c3a9000058544efe56a1f5f6d033
BLAKE2b-256 76500b8df171d30292167530877b9269c762927556d5dbd09cf80003abdd1589

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cc4284d06d62f5605502fe23ab8646e920176a6210a029474327fcd14c73953f
MD5 928163b0c022ce739abda9daee67da32
BLAKE2b-256 d6aa8d2c2557ce471da22709e9983569b7ec99d365a4c6688303a8a66ffbb589

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c1ab714c55c7894c15b4bd35fd7832ac0bae9a46e5ec1c52816de6c80e156329
MD5 3ee5be066a58710fe22f8fa802d16b3b
BLAKE2b-256 f2c012b45d3d15920637d59d7ad72bba7abf6b47d8b5e7d1cc9be8baeaee3105

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5dafa96f899ef788386c4a4e16a1e2be4ff6c28b5645c4d1359c9c6dad0281e4
MD5 06a9cfab4b4f3525d648faef049d16af
BLAKE2b-256 f25bae1131bd995ce525fb0868203d42c66ec6adb18c3e8886135081f5fe5c73

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 398f278dc3478052006240fa71f765df040dbb0f7d8e9f7c9b5f015edbb9cbd0
MD5 9e3f4510ae486c6f6df4122f32f2fb5d
BLAKE2b-256 2b9fbbf981735881e57780da480069fed9963687c97ccfc739037d2320777773

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 deeaa13233ff3481d41f343cd602381fc2041a174570d32e2be67eb318dd7e7b
MD5 aa39532ff2e82c4cd19bc02187d0514f
BLAKE2b-256 3d52fa6455f7ba6035586f9927c1deb86d3021c507296931a40716ff44f6761e

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0fd14c4d847db93502dc310781510e2e2afb3afce10b83589e0a4e7a58392e3b
MD5 e5eb5d12b2be60b974505a4f2dbe8025
BLAKE2b-256 789d3c0268739c2682ac5883b7990b36186033dd297fbcdcfed200f2b4cef7d0

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1c25f47ddb4fedd41ec0f7974e15e47680502f1e1ccb66c697f508bf7c070a0d
MD5 ba348e5a150d7ea7a26dddfce304f511
BLAKE2b-256 0a10f9ce0a60266f737217a98dee2923e23c79aa6ee89103ab1576496c8149f2

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 013f076ba211ba25908e43e36ce5587488936243ce5f2076213b3a4df76ebe45
MD5 f887bcf5e4d1d55a261ca566b14d978b
BLAKE2b-256 36cae19fa1967ef1ed2e17a9e448d312f0424d4802e67d2e2f90e8fed1f6fafe

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 748562a26318c9354bf28d6cd670b441e77d4942a54200d9bcfe3a9fe575fef3
MD5 fdaf5e9681125d3968db78eeaa5ae628
BLAKE2b-256 95d157c0c9f53f534688ef2989af9ca40fec9ac14d70468fad484db9389c4fd3

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 22b2174b6c8743507f56bdb369ff44f84e4b25ba5bd853c5cb37fe9ae85d6b50
MD5 4e7e99557477f028bf4776688ca0007f
BLAKE2b-256 717d33d5d97f3b2a6aca2195de4ec8f3cfd1c10dbd8ad5fe2f31e78f9a18424e

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 992e274799ddf9df200c152b361ae87a1424eff97e1112e27d57af4ba33f37aa
MD5 eb594b90341be91c14f75a012bd7c743
BLAKE2b-256 0ea844405b1435c00dacf9b40625b372124f5543aea893ba21a1480356f35f0f

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d1f1b4b38fe29c342ec3573ad1a905111564de7f680965f2442a898118ec9b0a
MD5 e8a44c22bdaa5104b57a0d58fcbe9f34
BLAKE2b-256 dff24a3216c45331ea87ef868a855735df466b7a3d82026a3e28fac03639f537

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 2325945aa14f78baf85d05f7de91ad915c3f43ba6020e540ac473c54f1e43505
MD5 cadc1fc2812763039f6e875e36c9e68a
BLAKE2b-256 fb1ee13b6a65c935592459ad2674e65db3628535dead881de8f0e3c3bf19d553

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 05961ff3a78e7cad2bcab0ab0b250ed4baf4d93d7241107fb7face5b10babbdf
MD5 0aa1d1b9764d4261d6d411d1d6d50006
BLAKE2b-256 7a62ae44ed07a9ce9870b43377f81b1e85ba1e69dcfa1b29ba99e85ecf648f6f

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0711b79d209c69469c7914cf3d6a93362a75d9e78e1591adb2e682118f89f179
MD5 8468b3e79c553eab46240acf8714311d
BLAKE2b-256 619d0eabe24eb6ddd71da29cd708a0360b295a390f089937bf2b782dccb50042

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 cbbebc85820d6bd001c77cec573f6db522abdb7bce33561c8aba315a0954373d
MD5 cc80ac152da10c79400ea56206779f92
BLAKE2b-256 1007eb5c0c24754015d7c4a5297da64fbdaa1a3d322c4d43bd6515c474acc21c

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 665168215595b47877f28b690106ef6c586b4e86a63f6956180ecb966bfa6424
MD5 7f8dba6cecafc572d8bca9f7a3624ef1
BLAKE2b-256 7d1cdb27a2e60abf2fb3aaf031b9b5f661cf02a2a81b90acff27d9128a1a45fa

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9a2ffa61c5936629d2875219a4ce36ed02e334cd303cdfe35f71cf21c17ef8a7
MD5 7c91c074e872daa9b26ba971d76ad248
BLAKE2b-256 8f3dc2e9fba81cc81e18dbf5365a5ef9cd2373b7de345b700cc892a3cfaa6106

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b247eae4f8f99d8347a1943a5506d323a70c5521293e15917f66c7d2641dfecb
MD5 2454896e5a08314cb94e28c865f3c8a4
BLAKE2b-256 e09c2d4553b084f46f9230b3b733cdcfc1839f05ede6b85d688989749fe4d118

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 d9d54a76d75db2b285624b5287701de3ef6cd724fe5c94934efefd54e8fdeeef
MD5 a22619479fd6eef47cbd5357f4da0586
BLAKE2b-256 127cfd0c30160306a7529b0ec810f796041372febc3d511af98911f666495c74

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 84407c5f3d3b5650a4f37819cbb29b40761a86a09142fedf6b7eb5aae1b576e7
MD5 d4e89f522feed7b7bf7b3ed158909c91
BLAKE2b-256 399ff15f00dd8fc8799dd6b1452746777b2628318cf14080c8923ca170a43f88

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 75aecfa927188010da867e543e3a0714b2e6d27151f6eda55053de64b51eaeff
MD5 564381ee0925a398e916325431b9bf9c
BLAKE2b-256 c58eb62e4447b9d2e62c3f3bee9a66b4c7de0465e8e02441ed7339258e70e20a

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04c8f4d9d4b51ca9215063961384ec3870184c1cd9def42dc91eb760e0e3796a
MD5 9cacb7f10d6cb896b49c5de8afd2c123
BLAKE2b-256 1296b612375538ee1a87e1eab8379640b8e528f2d96609cde6370641faac605d

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0558b1f70e9f995138be1012ed4e7b89c54068ce8af2f338c75d01980d07cf24
MD5 876064fc5594f908cbb9b93e5d4906d9
BLAKE2b-256 e0871c9ee3236af45eb2b85f7fdcae5998318211cda911d49baad489ba4d878b

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3def3d16ed29813b7cc86a65f06a68d06a05a2ba80cd77a56e3ce1c57a056615
MD5 ecb79fc843cccf7e1dc854de17651aff
BLAKE2b-256 1f5d75cf622be5c14017ec690bcb78217d8d623e1925ca2e088eb2105a41a6a4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 66a84fa7b480b4b0497531eb91987fbe111de46331509a58275444308123c1fc
MD5 636cb068edab4ded34701ed25cb3eade
BLAKE2b-256 d51d70d3ff714ab70f2a3bc3b974a27470213b1db786109e145e4f40a018c71e

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 56f61e8a2de47ef5ff108f3cfc9544fd647152eb1eb2cd8f8a8aa0d59a7e7dd1
MD5 ea90f100709e12d4e9e22f61f5a8345a
BLAKE2b-256 86b1ebcd9c8b6c072424dc3536ce84a40782f19fa4cd6a248115dc87bb57a507

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 79ebf7a7185239b1f0255119d822cf016b333d64f353a398e7ed5112943cece3
MD5 1283b9347ffb62b76f0d222aea9b1b14
BLAKE2b-256 c184ea34bc36a7c1aff58d5bc175347b9a486ee3cb4377adaeaaba91743ae711

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2ad0e8c790462fc7de56363902421461fbef486de29f7a72e692d8a35401585f
MD5 5d46210e90ad71ab20914e358ee279bc
BLAKE2b-256 1d09c5656e5751c112936eb00b251a7919bcbeb5e0219fa50ce74fbcaa54de60

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f8578399116df7ff1be3e48ee997fadb15a1f8004bfbffc12ab16d5eea3a804
MD5 a827c0c92abca2fdb3590d968a9043ab
BLAKE2b-256 61157b9b3bc1ac3904776b835693ea0ce92905cf6776d53b4885fe4e8f681c41

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c7b8493e4a317eb72b4fdf57e75e74a779b1c8b835bb6f3c0e86cc8e6554990
MD5 3e5d1de69c52b56ab02fa58eae05fe0e
BLAKE2b-256 d1f0d1a6d519f736eb586dcfeda9c173384cf88cdbe7d7eb40e0f3e68770a8a8

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4a7d0c572b5fec7ce361acffff0cf59602f6cb1fb3deb4072393cfe621ba56a1
MD5 f201a77dc484361b2fd513348dda9882
BLAKE2b-256 75200a1d27561fddf3b0ef7e394f2076d8bf1683782142238a9c5d8a6f764190

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 228a94902adee0e98abba3fa08d02a17f522cb0cd2df877d178e4a6aad91624b
MD5 072b7702f34c0d6e5c77214407e917fa
BLAKE2b-256 3898eaa966b9d18877de969ce03044bf4d5aed4c325ad9d2567156e6d51330f4

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b66f59090ceff25bb8d942adcc3396fe65bf79abeea2feb3fa8e8ea86ad3e310
MD5 f20415fece06b0d6cf0996523b6f5b64
BLAKE2b-256 afbc357535c47ce91fd29dd221b0bd4aa3c73353ddbdcadb171ad3a03ec8d9f8

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb9314a33043696dc57b4d5e7b35fc778f405f6442dfd7049db4ca3fa0168e61
MD5 0d7e9b1ca7b7514423b5835fd2a11ab6
BLAKE2b-256 5abd0901f015a40eb6e584403acbd9fffb46d84e82d479a9e2956a66c4e85e09

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f9af546dd3d4e6ea482c5aa91a92772756e3e4ab5b328d2cf26cc8953675b36
MD5 af9c6e3be89e7cc8e1d16d0d31f89b1b
BLAKE2b-256 9a993c7eb8a2e46ca781c25434f51c7317df297e46a797f8447cd7924b871c26

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f6e74404ed7400ab0d8aa32e7750514cbd9e60f0f4780bd3e48ac99935a6a905
MD5 7ced83bef9846efa7936195cbfd46702
BLAKE2b-256 055756cb97b51802c4d0ca9a8b71d24d7c6b680c4d069d44bb70a9b598f748af

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 559b7febe5e53f0d1d0142c84f5d2a1600c32047dd5fe7399a853e2ba2d846b0
MD5 e92ca3cc7ff9a3122324821fae8d1930
BLAKE2b-256 5f9222aac05c96fbfbb668f924a0394a2039e3785f6254239bf3bf41be79e5be

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df5b507341a387711e014326b5d94446a2a14c43ceb66fefccf5e380be480bb0
MD5 5de36a1090b2ead225d3c7f506af476d
BLAKE2b-256 849c6616c80cc3f3c631a74c7844c35c86b7887a847924fc000b419ec7d36c6e

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e03fd4ba4850092aba83dd18916a1379185692de5979aa3e034110d76f0d7ba
MD5 c8ebddaf4292623a52f144dc14c1abe7
BLAKE2b-256 0f09aa1055fea37dc4ea510bfdccec0af0f4a2130b14939bba1aac03d6d100f5

See more details on using hashes here.

File details

Details for the file pedalboard-0.8.9-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.8.9-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 9b399fe9f49e5c32d0c7bea36533d2cc80f64ee5a9eb4a44c5cec88880fc7b73
MD5 a7b14cc23d060954691ca7570b4805bc
BLAKE2b-256 f6cac98b89e4a88583fb5bf3bef765a1f26d46f861857e6fc5e2ee9b78dec586

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page