Skip to main content

A Python library for adding effects to audio.

Project description

Pedalboard Logo

License: GPL v3 Documentation PyPI - Python Version Supported Platforms Apple Silicon support for macOS and Linux (Docker) PyPI - Wheel Test Badge Coverage Badge PyPI - Downloads DOI GitHub Repo stars

pedalboard is a Python library for working with audio: reading, writing, rendering, adding effects, and more. It supports most popular audio file formats and a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit formats for loading third-party software instruments and effects.

pedalboard was built by Spotify's Audio Intelligence Lab to enable using studio-quality audio effects from within Python and TensorFlow. Internally at Spotify, pedalboard is used for data augmentation to improve machine learning models and to help power features like Spotify's AI DJ and AI Voice Translation. pedalboard also helps in the process of content creation, making it possible to add effects to audio without using a Digital Audio Workstation.

Documentation

Features

  • Built-in audio I/O utilities (pedalboard.io)
    • Support for reading and writing AIFF, FLAC, MP3, OGG, and WAV files on all platforms with no dependencies
    • Additional support for reading AAC, AC3, WMA, and other formats depending on platform
    • Support for on-the-fly resampling of audio files and streams with O(1) memory usage
    • Live audio effects via AudioStream
  • Built-in support for a number of basic audio transformations, including:
    • Guitar-style effects: Chorus, Distortion, Phaser, Clipping
    • Loudness and dynamic range effects: Compressor, Gain, Limiter
    • Equalizers and filters: HighpassFilter, LadderFilter, LowpassFilter
    • Spatial effects: Convolution, Delay, Reverb
    • Pitch effects: PitchShift
    • Lossy compression: GSMFullRateCompressor, MP3Compressor
    • Quality reduction: Resample, Bitcrush
  • Supports VST3® instrument and effect plugins on macOS, Windows, and Linux (pedalboard.load_plugin)
  • Supports instrument and effect Audio Units on macOS
  • Strong thread-safety, memory usage, and speed guarantees
    • Releases Python's Global Interpreter Lock (GIL) to allow use of multiple CPU cores
      • No need to use multiprocessing!
    • Even when only using one thread:
      • Processes audio up to 300x faster than pySoX for single transforms, and 2-5x faster than SoxBindings (via iCorv)
      • Reads audio files up to 4x faster than librosa.load (in many cases)
  • Tested compatibility with TensorFlow - can be used in tf.data pipelines!

Installation

pedalboard is available via PyPI (via Platform Wheels):

pip install pedalboard  # That's it! No other dependencies required.

If you are new to Python, follow INSTALLATION.md for a robust guide.

Compatibility

pedalboard is thoroughly tested with Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12 as well as experimental support for PyPy 3.7, 3.8, and 3.9.

  • Linux
    • Tested heavily in production use cases at Spotify
    • Tested automatically on GitHub with VSTs
    • Platform manylinux and musllinux wheels built for x86_64 (Intel/AMD) and aarch64 (ARM/Apple Silicon)
    • Most Linux VSTs require a relatively modern Linux installation (with glibc > 2.27)
  • macOS
    • Tested manually with VSTs and Audio Units
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for both Intel and Apple Silicon
    • Compatible with a wide range of VSTs and Audio Units
  • Windows
    • Tested automatically on GitHub with VSTs
    • Platform wheels available for amd64 (x86-64, Intel/AMD)

Examples

Note: If you'd rather watch a video instead of reading examples or documentation, watch Working with Audio in Python (feat. Pedalboard) on YouTube.

Quick start

from pedalboard import Pedalboard, Chorus, Reverb
from pedalboard.io import AudioFile

# Make a Pedalboard object, containing multiple audio plugins:
board = Pedalboard([Chorus(), Reverb(room_size=0.25)])

# Open an audio file for reading, just like a regular file:
with AudioFile('some-file.wav') as f:
  
  # Open an audio file to write to:
  with AudioFile('output.wav', 'w', f.samplerate, f.num_channels) as o:
  
    # Read one second of audio at a time, until the file is empty:
    while f.tell() < f.frames:
      chunk = f.read(f.samplerate)
      
      # Run the audio through our pedalboard:
      effected = board(chunk, f.samplerate, reset=False)
      
      # Write the output to our output file:
      o.write(effected)

Note: For more information about how to process audio through Pedalboard plugins, including how the reset parameter works, see the documentation for pedalboard.Plugin.process.

Making a guitar-style pedalboard

# Don't do import *! (It just makes this example smaller)
from pedalboard import *
from pedalboard.io import AudioFile

# Read in a whole file, resampling to our desired sample rate:
samplerate = 44100.0
with AudioFile('guitar-input.wav').resampled_to(samplerate) as f:
  audio = f.read(f.frames)

# Make a pretty interesting sounding guitar pedalboard:
board = Pedalboard([
    Compressor(threshold_db=-50, ratio=25),
    Gain(gain_db=30),
    Chorus(),
    LadderFilter(mode=LadderFilter.Mode.HPF12, cutoff_hz=900),
    Phaser(),
    Convolution("./guitar_amp.wav", 1.0),
    Reverb(room_size=0.25),
])

# Pedalboard objects behave like lists, so you can add plugins:
board.append(Compressor(threshold_db=-25, ratio=10))
board.append(Gain(gain_db=10))
board.append(Limiter())

# ... or change parameters easily:
board[0].threshold_db = -40

# Run the audio through this pedalboard!
effected = board(audio, samplerate)

# Write the audio back as a wav file:
with AudioFile('processed-output.wav', 'w', samplerate, effected.shape[0]) as f:
  f.write(effected)

Using VST3® or Audio Unit instrument and effect plugins

from pedalboard import Pedalboard, Reverb, load_plugin
from pedalboard.io import AudioFile
from mido import Message # not part of Pedalboard, but convenient!

# Load a VST3 or Audio Unit plugin from a known path on disk:
instrument = load_plugin("./VSTs/Magical8BitPlug2.vst3")
effect = load_plugin("./VSTs/RoughRider3.vst3")

print(effect.parameters.keys())
# dict_keys([
#   'sc_hpf_hz', 'input_lvl_db', 'sensitivity_db',
#   'ratio', 'attack_ms', 'release_ms', 'makeup_db',
#   'mix', 'output_lvl_db', 'sc_active',
#   'full_bandwidth', 'bypass', 'program',
# ])

# Set the "ratio" parameter to 15
effect.ratio = 15

# Render some audio by passing MIDI to an instrument:
sample_rate = 44100
audio = instrument(
  [Message("note_on", note=60), Message("note_off", note=60, time=5)],
  duration=5, # seconds
  sample_rate=sample_rate,
)

# Apply effects to this audio:
effected = effect(audio, sample_rate)

# ...or put the effect into a chain with other plugins:
board = Pedalboard([effect, Reverb()])
# ...and run that pedalboard with the same VST instance!
effected = board(audio, sample_rate)

Creating parallel effects chains

This example creates a delayed pitch-shift effect by running multiple Pedalboards in parallel on the same audio. Pedalboard objects are themselves Plugin objects, so you can nest them as much as you like:

from pedalboard import Pedalboard, Compressor, Delay, Distortion, Gain, PitchShift, Reverb, Mix

passthrough = Gain(gain_db=0)

delay_and_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.25, mix=1.0),
  PitchShift(semitones=7),
  Gain(gain_db=-3),
])

delay_longer_and_more_pitch_shift = Pedalboard([
  Delay(delay_seconds=0.5, mix=1.0),
  PitchShift(semitones=12),
  Gain(gain_db=-6),
])

board = Pedalboard([
  # Put a compressor at the front of the chain:
  Compressor(),
  # Run all of these pedalboards simultaneously with the Mix plugin:
  Mix([
    passthrough,
    delay_and_pitch_shift,
    delay_longer_and_more_pitch_shift,
  ]),
  # Add a reverb on the final mix:
  Reverb()
])

Running Pedalboard on Live Audio

On macOS or Windows, Pedalboard supports streaming live audio through an AudioStream object, allowing for real-time manipulation of audio by adding effects in Python.

from pedalboard import Pedalboard, Chorus, Compressor, Delay, Gain, Reverb, Phaser
from pedalboard.io import AudioStream

# Open up an audio stream:
with AudioStream(
  input_device_name="Apogee Jam+",  # Guitar interface
  output_device_name="MacBook Pro Speakers"
) as stream:
  # Audio is now streaming through this pedalboard and out of your speakers!
  stream.plugins = Pedalboard([
      Compressor(threshold_db=-50, ratio=25),
      Gain(gain_db=30),
      Chorus(),
      Phaser(),
      Convolution("./guitar_amp.wav", 1.0),
      Reverb(room_size=0.25),
  ])
  input("Press enter to stop streaming...")

# The live AudioStream is now closed, and audio has stopped.

Using Pedalboard in tf.data Pipelines

import tensorflow as tf 

sr = 48000 

# Put whatever plugins you like in here:
plugins = pedalboard.Pedalboard([pedalboard.Gain(), pedalboard.Reverb()]) 

# Make a dataset containing random noise:
# NOTE: for real training, here's where you'd want to load your audio somehow:
ds = tf.data.Dataset.from_tensor_slices([np.random.rand(sr)])

# Apply our Pedalboard instance to the tf.data Pipeline:
ds = ds.map(lambda audio: tf.numpy_function(plugins.process, [audio, sr], tf.float32)) 

# Create and train a (dummy) ML model on this audio:
model = tf.keras.models.Sequential([tf.keras.layers.InputLayer(input_shape=(sr,)), tf.keras.layers.Dense(1)])
model.compile(loss="mse") 
model.fit(ds.map(lambda effected: (effected, 1)).batch(1), epochs=10)

For more examples, see:

Contributing

Contributions to pedalboard are welcomed! See CONTRIBUTING.md for details.

Citing

To cite pedalboard in academic work, use its entry on Zenodo: DOI 7817838

To cite via BibTeX:

@software{sobot_peter_2023_7817838,
  author       = {Sobot, Peter},
  title        = {Pedalboard},
  month        = jul,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.7817838},
  url          = {https://doi.org/10.5281/zenodo.7817838}
}

License

pedalboard is Copyright 2021-2023 Spotify AB.

pedalboard is licensed under the GNU General Public License v3. pedalboard includes a number of libraries that are statically compiled, and which carry the following licenses:

VST is a registered trademark of Steinberg Media Technologies GmbH.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pedalboard-0.9.0-pp39-pypy39_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-pp39-pypy39_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.0-pp38-pypy38_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-pp38-pypy38_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.0-pp37-pypy37_pp73-win_amd64.whl (3.1 MB view details)

Uploaded PyPy Windows x86-64

pedalboard-0.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-pp37-pypy37_pp73-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded PyPy macOS 10.13+ x86-64

pedalboard-0.9.0-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86-64

pedalboard-0.9.0-cp312-cp312-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pedalboard-0.9.0-cp312-cp312-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pedalboard-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp312-cp312-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pedalboard-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pedalboard-0.9.0-cp312-cp312-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.0-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86-64

pedalboard-0.9.0-cp311-cp311-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pedalboard-0.9.0-cp311-cp311-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pedalboard-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp311-cp311-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pedalboard-0.9.0-cp311-cp311-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

pedalboard-0.9.0-cp311-cp311-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.0-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pedalboard-0.9.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pedalboard-0.9.0-cp310-cp310-musllinux_1_1_aarch64.whl (3.8 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pedalboard-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp310-cp310-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pedalboard-0.9.0-cp310-cp310-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

pedalboard-0.9.0-cp310-cp310-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.0-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pedalboard-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp39-cp39-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pedalboard-0.9.0-cp39-cp39-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

pedalboard-0.9.0-cp39-cp39-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.0-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86-64

pedalboard-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp38-cp38-macosx_11_0_arm64.whl (2.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pedalboard-0.9.0-cp38-cp38-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

pedalboard-0.9.0-cp38-cp38-macosx_10_13_universal2.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ universal2 (ARM64, x86-64)

pedalboard-0.9.0-cp37-cp37m-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.7m Windows x86-64

pedalboard-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp37-cp37m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7m macOS 10.13+ x86-64

pedalboard-0.9.0-cp36-cp36m-win_amd64.whl (3.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

pedalboard-0.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pedalboard-0.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

pedalboard-0.9.0-cp36-cp36m-macosx_10_13_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file pedalboard-0.9.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 33d0ef12d7f20d88df5b44509f8160a34a1d72178b9baf13d04db62c9259654f
MD5 5c3602d1f61ef5ca436654d503e2d67a
BLAKE2b-256 3b016f57cf073e390f12a8efe0f7d899da57839195fdf1326af1e4c37d949382

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b827f4cc47fadc0fe6c5f527daf50df4459f0a2fa8098b41ac044886f48c16cb
MD5 a96ed03516e07aae86289cb6bb909a35
BLAKE2b-256 97138adca89515aa37fd966cca0300cb2cf6bffef4afd715c5c70b778d3721be

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7b60d84189cffa13d9e402fb24345b94718ae805dc90be5750bb77e9a638151c
MD5 8ab5330dabd32da62022f0e71af4ed8c
BLAKE2b-256 17c770d62be872abc047120a3896927b722162cb299bef4e970763a38986db9c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp39-pypy39_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp39-pypy39_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fdd723b528374bc522e4a296f9959a4931a57c4addc851ac002c8b64029116c7
MD5 51383124ff023d6e09cda92714bb38bc
BLAKE2b-256 1d71907420cf063e05bd4bd49ecb82055fb386f43d6bcb7dda13e6d3fb32051c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 86012fdd56211041691b05591c7064c1206e9abe37fe760426e37bc24f15047e
MD5 29bcc35acfbd1b46d5cead24bbb74fe5
BLAKE2b-256 92a09d59128b207e80d70b10bc8e86032607ecc438ffff39c8de3a5927708cca

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 501f3cec9599bf0f18af7d2f5487d2a2de3da402390a543ccd6e3e509216cca1
MD5 02c95a933bf4f9badc4d81a6e5d06dee
BLAKE2b-256 12cf8bd4e651c165304691c3799f9d98d63ccd07cbcbdfbef5e198d53ca23435

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2c4df6c982a248bdc8faed49802942b41925e794ca4ee45d266ba690e51f3837
MD5 80537e65f2224e6095ad4cbae6aba0fd
BLAKE2b-256 68690f2308f650fdf7879af1ad534b6fec63f45deb0e151a1d3c347d4672d343

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp38-pypy38_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp38-pypy38_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3048c5c34c27bb5d9966a1da89bf060ea6f823444073197b977eee088ed7d0d7
MD5 89bb66b0d14e18fd75a8267e0c14d5c8
BLAKE2b-256 f8f29c44a2d80813ea5c5562db21f3482fe5c84f55fc22f50dbafec85f542e91

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7af726b47bd916278982bee2b2f9572a89cd1aa3d1cb516eb553aa6e94db0987
MD5 d6caa6b0862ff251333bfa57e977cb05
BLAKE2b-256 7584dd2f23d20eb2b91220fdd9e57674b7ea2fb34821a4683dfaaec294eba07b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d3ef3f8e437cde2f83a2759173f7084f7f2f0695d3813f0a70622de6b5822cd
MD5 82a47067c6dff9ba8dc1ab7f0d39445d
BLAKE2b-256 f89165dea75bd0f433caf3d6219a87b042c0970f52498662a36a4c1824587122

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f18af06e3cda3ff414f1c29dfc1ccb5a9ea08363cbd7bc52147b6442828e857
MD5 977279e136efa095043e4032a03da2e7
BLAKE2b-256 d76c80c4ad041b38829786d9a39ab6313d0ac92f4dc726fdbfa0ef64b4db0205

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-pp37-pypy37_pp73-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-pp37-pypy37_pp73-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 758dc41f011d1138fdaa9489c05a3865924ae60f69a94b8aa78742c8e5496f36
MD5 89d2672d91fa957b2da1831af72ef97c
BLAKE2b-256 c3564327108c7e2a6a4e466bf8403a9741788cfc920dd832067eab288dbd77d3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 49d04d844134d456270adc783efd68d8b2635a097db5181943bd8aeaee4d68b2
MD5 f222a448ccf3a64a066198995db0c74e
BLAKE2b-256 5cabf3ef414c15c33263cef65734a472dc2f50e32bc19437be473632e5f14b40

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1df78e4b3d1a42460abb7bebdbf570cdd27392bfa2d6d7da2de44de0567bfbba
MD5 a6079c7f1a38bda73be235bce67ca9da
BLAKE2b-256 ef79a6fc54501f5e608b05615d409ffe8651f209e0bde20764fe0ada87a1d768

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 a35934b9621302621c455c56ff4ab2853ae562f953ad0b2fd8e38f6d6bf37fc1
MD5 4eb3178ff5e8afb8206aaaf122114070
BLAKE2b-256 747b81072f2c11465ac1d30dcf6f52353f5cb570f1a34eca6d7a549e9a6ad784

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5c34dacdbc406a1ed6260528df2556019bedfe9ee83a3048ec9c68b412e8eeae
MD5 a4beea9822d37dffbd53892c22db42aa
BLAKE2b-256 d11efa6be4d65638ef4b079a9e6c1f526f462c61001d9b288369c0dae656bc82

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84b7ff17b7d3719e910239042ec3404d112f0c91de0bc3841f4bdd2693a21d15
MD5 1edd9e3856da085bbd9bf8f9b33005f5
BLAKE2b-256 16a9fc60b5fa458e77ab8073603278c1b69558cc2899623504b5aff7b8750fc6

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a9d8112b656b54cceab1849484969c368ceea87813a16e94c2a3f579c1801dfb
MD5 4cea4e926c724dc2f5963d744831300f
BLAKE2b-256 56423af72f88babeac35475e2ab201d34cefaf7f39dda7fbbe090494ee62749d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8a547fc6b15fd419d7358a130ce8a768c688acc74e01f516164cd388ac779ede
MD5 1b1534f38e26b6fdf62d150937bd263e
BLAKE2b-256 ed25c7791f805ef039e142547722f6bce044e2aeb6fdd1fd67c87117b95fcfc9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 0a2e6c8db8482551ef97e81c62c68cd79d75185a4b17c01e82f9d0a9e0eca66a
MD5 3b957a07e0369e87af0e796ad47d019d
BLAKE2b-256 c398539f9761010015a2f1d9653a9aed78913de92ae3e8ba68d30851db1de751

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 db93113052b54a05be14103a7e84ed8683c47195e8edb64022d2f8011bc1b648
MD5 cb09c8707009f4cc6b650d6c31454400
BLAKE2b-256 728430caa277fb968cb0b6ff376c4cbdfbed854aba751ebd2d3554aeb20fb6a0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9089003782494051c0dc61306f19321ec610001b3920b80b40b4994a5ac5d98e
MD5 bf97a3bdb1498db1b838a4f15a7dee86
BLAKE2b-256 9f1b732ad344bf38532c57264107b8ada0a6610497e1183d11749f0083dff667

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 5b291557544b6bec17005210072d278a929e4ec0dafddcb60814148f0d678660
MD5 afbb5c6b709bbc20691363dcd04bf699
BLAKE2b-256 e9f3be457282a4426c2d6ce44b2175e532b444edaee5d870582e60cd5df739d2

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d841d75a054a9f80707eb338acee4b4e503a33bf12c11cc205d0b4c0d039fea3
MD5 950e52935aeac8413528852c2e2d5547
BLAKE2b-256 56475f6641d7706744c09961763c03e46c9bd3f7131b4d93db899fa69c6b52c7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4983efd34a0a40dda15f943b11fcb3c58c16ca71bf48bd3d3d89e15826878b57
MD5 dff0e112010a41d7a67f7c4e24afa6b4
BLAKE2b-256 2378850597c3e1473f050fc0bc5e585fb552fa0eea75bd0d1040abca7e490310

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea0cc38267de7545ae7940f78551fbdf542bee0086d94f870e18863037d5bc77
MD5 634d7d94f59132cc525a482622bef1b6
BLAKE2b-256 75b5bd4274c9d73d8e99c3eb9a94b7fa379ad897091692296750d314bb4115e3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 fe70cbb7a843fe303ac6a1e494ece0d004c21bc43ab85534591d9260df5d5246
MD5 d35d893aef5d5bd3074e4516106712dc
BLAKE2b-256 6a0d44a663d48073704fe4bc341eb68e7fe28a7a09c8e1703be5559e7dff5f83

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp311-cp311-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp311-cp311-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 d9c3923a383322938c898824e9b46fff8f8f039f90903172ab840cc49d875a4d
MD5 35e09b574eabcdeaaa22a87e559e2047
BLAKE2b-256 da61721c3f0e1d8243c93c21ff065abca699b1f90b58b555a55c2ea18d05f6af

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fd9e2ebc242486986f5fb1c14948f38334f6a26f7d9d3ef9fa6c3e0d9d41dd46
MD5 93325ec34cf9f97abfe711612caaad2a
BLAKE2b-256 40ee3cf6dfc5d5c599af8d472318b8a771c6d2422ba78f508fd94bcff7d0a917

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6a5c5628d81ed4fd13789da258fbaa6963dd33156ded87dc6443f8188f605581
MD5 566b188350b7db0c0dda741eaaa8c6ec
BLAKE2b-256 a189349c0c13da2e491a946bc8babf9459b1ba97b7862f67a8d60f990668ff61

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 679b7373ee8e23cb6b9fc24e7a65c7336326dd8a3d0456f4063c28c840d04d2f
MD5 02ed4156a070537e2af1dad934f54605
BLAKE2b-256 a524a77f5111c1d82388a3ea06c48cda33d721e7d4884db33bdb4b31e7339d2f

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44daef0590e6508aca091fc2f806f974a90076feeb792ed2dc1a35498a2d6296
MD5 bf5286f4731faa61f954d0a6d4da3064
BLAKE2b-256 6673de29b35944947ccf7f3c7f1b4a8bca15d75b1d5c3016b05ee9ecceadaf8c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 630372de24bf12773fb4a790649e6ad07289f0a4f8c5ca306e2f9aa371f0779d
MD5 3e5f5eea1299fb58ad30163f1c46dbb1
BLAKE2b-256 0b95acd1dce22aa465fb273f0222d54d8f5fd96b19071768889821234f7b57a5

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7c027d54bc418c7e45bb85ad244cd9557822a8be57209933276e7ecbcf397765
MD5 507baee0016422aabaafbf1f122a090c
BLAKE2b-256 63ea76d281ae3e86e6008c9559486feb98267e388b5240b4f43883a8461c2a7d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5e90b5b5572d6b94ec6f4d5992f18323a70699946df726d49569a5d568661dac
MD5 68230b3e03240d0bd3c9e77d78212de5
BLAKE2b-256 1ffa9febdb9ba89f9d8f9d5847df0ce271ec77ce118b5592fa8fab236deb74d1

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp310-cp310-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp310-cp310-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 32599217f42b7f5a08b3784da7e9cf51aef42da81abb57352a8e0787615b8542
MD5 a6f282aac5c9b8aebbaa3f6e6313f77c
BLAKE2b-256 d75805cea2444791f7352c1f5d3db9d92ac3e9381e5c55b771e2b72185f41145

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f804346081daf760317aec4eb1411093d66934f1b975f7ce296208374947e7db
MD5 16fd68a7969f648ea84ceb2bd7f17481
BLAKE2b-256 0f9611d3bb18bdc8d31762990c4d55e5d5da0ca64972aa3eff11ca77e40cad9a

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08ea236a47b3092adb59035a85802827f17658210aa0b2096cfe18eb48c05ec7
MD5 0d561d26833013ac82a6e6d48f5f15e2
BLAKE2b-256 f6d7785f89f07e599e8e5e8d56fdaa46327ca48d47c31b7f875413869b8c6b4c

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8cc5a45a1c3be928ee790b08d0eab2968e4b3141689e6d8041db5b68e351d3a1
MD5 143919ea37c964adc9f18b1f34a1c604
BLAKE2b-256 ef902d409bb5eafaec8e7a8f1f55ff1d990b7f7b4a4ef93a125ea3e9c94a7230

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7992bc0ca5169648e29847af4ec7845fcf458bb5b1e37317b1f328865c681724
MD5 1fd8b0dcd55aaf8fff9690ab54defed4
BLAKE2b-256 cb85cb7af5caa18ae4f17efdf32eabd5068e97a076aad41821bc116a4aa4986b

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e181eb16d6d8715c9dad17d5ab0b576f4bef8e915780a3cad9740bc4820a5fc0
MD5 413eec53bf26bdd27bc0494fe8a208c6
BLAKE2b-256 ae9357ec4da28ec2dc417d79272bddd86648f28faa93ed1a2480937a3dc3c9d7

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp39-cp39-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp39-cp39-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 7d2ed978e938f5fcae55aaa5b8d218b58a3018a8b34d07563dc3cf76ca01a946
MD5 31c9250f91c5124a9a7168f8e9fd0185
BLAKE2b-256 bcfebdd2f238cccde994531e934309d842d558e9ba1755240cb7de1edb168dce

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9f14f46e8316f4f6de8762678c567ff927e56c1bceb9a80fc62703988c8f0f4f
MD5 2f995a8f209d5c0dcdb4a26cdd9c0524
BLAKE2b-256 d9602d0749b8f3cc7a852d37811680e9edf591627ba3a9e8c4de62189c2db146

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 60aca7d95215ef5ea5d07759eb958413f024584eefb9a56eed3f68ee4e2e7c07
MD5 df325695fa27b1c55160fff22741c758
BLAKE2b-256 d1eb9e1d97ff88e38154d329f0ce41334d1b5e0f7aaa97a7182c6fb1df3588d8

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17e7248325d7177477630a5339fe45140364cb076be9dd418ef88c41fdfbe6d3
MD5 299cd243f83acc4918f4698e390b6c16
BLAKE2b-256 a75169e5fa4b0bb9e08e18c7cef6c5dd22f776fc13e7e8a10c76bc7f51a73acc

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5515a3895194070b5f464f280a638b51786ce5a161f8e910baa200c821eac2e0
MD5 7c0a247c62486348d07e7749a20297f8
BLAKE2b-256 3d6c4dcf1cba1126a7991a9cb238127f096ef31aa25b64018ec57cedc1138cec

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5bcbe48cb2cfbbe2a53cd899c20142c69fd43104c7c38f5b8aa605a34f664c3b
MD5 e0d48344eb7759c787b6b788d2594184
BLAKE2b-256 dca1f1510b0d54d38debf10d9f2cd217d5eebcefd9318b1bba1422d3fae2bce3

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp38-cp38-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp38-cp38-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 fb8a4262d05d558c47dd04088d6b045e0fd5800693ce19bd73a8c1192b57621d
MD5 a531214e369afc4195161adf0a877c86
BLAKE2b-256 751eb4fc0d9679a2c38c22ed7a22d0292afb0171115a97e279b6b0a817a29314

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 17ef81157ad5bd3db082ebf5b6002a8384a3e8ca039fe49a1b4e458094453790
MD5 da6d2de77eaf19b809ce137629dcec62
BLAKE2b-256 464df6f7d9c8155d4affa77d8e8fb1ac95445c956c55465d217d283c9004ba79

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a9adc11a09b30a55f9f67ba98bfc8a8bbbc74a9d4afa4154b11d1af0a0499ed
MD5 28e0f35cf36a5744a61ab3c5af2a9ab9
BLAKE2b-256 b87edd11bde629169c8782b8204eef7392b8365e084e3a6ae1733bfe345ad9de

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a0a2ceed94880bdf97fc0de96ab95cdb87357c501470645ad4ef2c6bcf13e502
MD5 de4121ec89c3b9d9299831b1a0922309
BLAKE2b-256 5836b2db095472f14e027d9716a43c193d20117931bc0c37ab9fffe1ee28a484

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp37-cp37m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp37-cp37m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5f2c4c9e51a8e1e918dfd9c9e91d95e5120579555c47cc3267c68f2eee1abfa7
MD5 52eb8a4b4532b912776a3b750f43d0f9
BLAKE2b-256 61b25dad74658d514e8faf9ed7604a46dd72d0b4ae7727f294f0521bc883cae0

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c8f8210708dafaa5890f30e8c68592ce7395b9b70efa8b40445b9c51071354f1
MD5 b6fb868c99a5126af2ab4322af8ae9d1
BLAKE2b-256 c17f5a421a56625ba9e669a76b45a9d18da41a776665f4ea6c819f979cfb41f9

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dec87d137328f446fe362048d2890125e10e0be1b3f7d7029d09d62230f1e4a6
MD5 8108b6172e8208aab3675ae65e211a09
BLAKE2b-256 66d91c54f0e7d48a360bb0a542b91ed5c06fa981dd78ad0044d24b656407c12d

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 17bb055267e9390c0473294e79eaf50f8a981e1404bb5ab26c788c5adb1ddfa0
MD5 7f5ace5120c07e588fc474825c5bb43a
BLAKE2b-256 d93ee12f96add8cba9df5ecce0f08b528af110a5c07c94d09a31662d5f851702

See more details on using hashes here.

File details

Details for the file pedalboard-0.9.0-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pedalboard-0.9.0-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 971478d0213e5692c27dea87e5f63585162f8bf88b1709a74bf7a7d10aae005f
MD5 b27dc1027a65c27f0396c5e60b871231
BLAKE2b-256 aa830ede72145b0d286d973af6acf0bee31e98aefd755ddeff1bca9cbdcb8c6a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page